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Topologie des Espaces Vectoriels
Normés

Théorème 1 : Inégalité Triangulaire :

(E, ∥·∥) designe un K-espace vectoriel normé. Soient x, y ∈ E. Alors

|∥x∥− ∥y∥| ≤ ∥x± y∥ ≤ ∥x∥+ ∥y∥ .

Démonstration. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ n’est que l’inégalité triangulaire. En substituant y par −y, on trouve,

∥x− y∥ ≤ ∥x∥+ ∥y∥ .

Maintenant,
∥x∥ = ∥x− y+ y∥ ≤ ∥x− y∥+ ∥y∥ ,

ainsi, ∥x∥− ∥y∥ ≤ ∥x− y∥. Par symétrie de rôles, ∥y∥− ∥x∥ ≤ ∥y− x∥ = ∥x− y∥ ce qui fournit

|∥x∥− ∥y∥| ≤ ∥x− y∥ .

En substituant y par −y, on trouve encore

|∥x∥− ∥y∥| ≤ ∥x+ y∥ .

■

Théorème 2 : Inégalité de Cauchy-Schwarz :

Soit (E, ⟨·, ·⟩) un espace préhilbertien. Notons ∥·∥ la norme euclidienne associée à ce produit scalaire ie. l’application
∥·∥ : E −→ K

x 7−→√
⟨x, x⟩

. Alors

∀(x, y) ∈ E2, |⟨x, y⟩| ≤ ∥x∥ ∥y∥ ,

avec égalité si et seulement si x et y sont liés.

Démonstration. La norme euclidienne est bien définie par positivité du produit scalaire. La propriété est évidente
si y = 0. Dorénavant, on suppose le contraire.

Soit t ∈ K puis notons l’application φ(t) = ∥x− ty∥2. Alors,

φ(t) = ∥x− ty∥2

= ⟨x− ty, x− ty⟩
= ⟨x, x⟩− t⟨x, y⟩− t⟨y, x⟩+ tt⟨y, y⟩

= ∥x∥2 −
(
t⟨x, y⟩+ t⟨x, y⟩

)
+ |t|2 ∥y∥2

= ∥x∥2 − 2Re (t⟨x, y⟩) + |t|2 ∥y∥2

≥ 0.

Alors,
∀t ∈ K, 2Re (t⟨x, y⟩) ≤ ∥x∥2 + |t|2 ∥y∥2 .

En particulier pour t0 =
⟨x, y⟩
∥y∥2

, l’inégalité devient :

2Re

(
⟨x, y⟩⟨x, y⟩

∥y∥2

)
≤ ∥x∥2 +

∣∣∣∣∣ ⟨x, y⟩∥y∥2

∣∣∣∣∣
2

∥y∥2 ⇐⇒ 2

∥y∥2
Re
(
|⟨x, y⟩|2

)
≤ ∥x∥2 + |⟨x, y⟩|2

∥y∥2⇐⇒ 2 |⟨x, y⟩|2 ≤ ∥x∥2 ∥y∥2 + |⟨x, y⟩|2⇐⇒ |⟨x, y⟩|2 ≤ ∥x∥2 ∥y∥2 .

Le passage à la racine carrée donne l’inégalité désiriée. Maintenant, on obtient l’égalité si et seuelement si φ (t0) = 0,
soit ∥x− t0y∥ = 0 puis x− t0y = 0, ou encore que la famille (x, y) est liée. ■

3



Théorème 3 : Norme Euclidienne :

L’application “norme euclidienne” est une norme.

Démonstration. L’application ∥·∥ est bien définie et est positive par positivité de la fonction racine carrée.

• Homogénéité : soient x ∈ E et λ ∈ K. Alors

∥λx∥ =
√
⟨λx, λx⟩ =

√
λ2⟨x, x⟩ = |λ|

√
⟨x, x⟩ = |λ| ∥x∥ .

• Séparation : soit x ∈ E. Supposons que ∥x∥ = 0. Alors ⟨x, x⟩ = 0 puis x = 0 par définition du produit scalaire.

• Inégalité triangulaire : soient x, y ∈ E.

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩

= ∥x∥2 + 2Re (⟨x, y⟩) + ∥y∥2

≤ ∥x∥2 + 2 |⟨x, y⟩|+ ∥y∥2

≤ ∥x∥2 + 2 ∥x∥ ∥y∥+ ∥y∥2

= (∥x∥+ ∥y∥)2 .

Ceci fournit ∥x+ y∥ ≤ ∥x∥+ ∥y∥. On a montré que ∥·∥ est une norme sur E. ■

Théorème 4 : Quelques Normes sur Kd :

Soient sur Kd (d ∈ N∗) les applications suivantes :

∥·∥1 : (x1, · · · , xd) 7−→ d∑
k=1

|xk| , ∥·∥2 : (x1, · · · , xd) 7−→
(

d∑
k=1

|xk|
2

) 1
2

,

∥·∥∞ : (x1, · · · , xd) 7−→ max
1≤k≤d

|xk| .

Les applications ∥·∥1, ∥·∥2 et ∥·∥∞ sont des normes sur Kd.

Démonstration. Commençons par ∥·∥1 et ∥·∥2.

• Les applications ∥·∥1 ∥·∥2 sont bien définies et sont à valeurs dans R+.

⋆ Homogénéité :

∀x = (xk)1≤k≤d ∈ Kd, ∀λ ∈ K, ∥λx∥1 = ∥(λx1, · · · , λxd)∥1 =
d∑
k=1

|λxk| = |λ|

d∑
k=1

|xk| = |λ| ∥x∥1

et

∀x = (xk)1≤k≤d ∈ Kd, ∀λ ∈ K, ∥λx∥2 = ∥(λx1, · · · , λxd)∥2 =

(
d∑
k=1

|λxk|
2

) 1
2

=
√

|λ|2

(
d∑
k=1

|xk|
2

) 1
2

= |λ| ∥x∥2 .

⋆ Séparation : soit x = (xk)1≤k≤d ∈ Kd. Supposons que ∥x∥1 = 0. Alors
d∑
k=1

|xk| = 0 puis ∀k ∈ J1, dK, xk = 0

ou encore x = 0.

Idem, si ∥x∥2, alors ∀k ∈ J1, dK, |xk|
2
= 0 puis xk = 0.

⋆ Inégalité triangulaire : soient x = (xk)1≤k≤d , y = (yk)1≤k≤d ∈ Kd. Alors :

∥x+ y∥1 =
∥∥∥(xk + yk)1≤k≤d∥∥∥

1
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=

d∑
k=1

|xk + yk|

≤
d∑
k=1

(|xk|+ |yk|)

= ∥x∥1 + ∥y∥1

et

∥x+ y∥2 =

(
d∑
k=1

|xk + yk|
2

) 1
2

≤

(
d∑
k=1

|xk|
2

) 1
2

+

(
d∑
k=1

|yk|
2

) 1
2

Inégalité de Minkowski

= ∥x∥2 + ∥y∥2 .

• Maintenant, la partie E = {|xk| , k ∈ J1, dK} est une partie finie de R+. Son maximum alors existe et est un
élément de R+, justifiant que ∥·∥∞ est une application bien définie à valeurs dans R+.

⋆ Homogénéité : une méthode entre autres est la suivante : soient x = (x1, · · · , xd) ∈ Kd et λ ∈ K. Soit
k0 ∈ J1, dK tel que |xk0

| = max E = ∥x∥∞. Soit k ∈ J1, dK. Alors |λxk| = |λ| |xk| ≤ |λ| |xk0
| = |λ| ∥x∥∞. Alors ∥λx∥∞ =

max
1≤k≤d

|λxk| ≤ |λ| ∥x∥∞. Inversement, |λ|| |xk0
| ∈ {|λ| |xk| , k ∈ J1, dK} donc |λ| ∥x∥∞ = |λ|| |xk0

| ≤ max
1≤k≤d

|λxk| = ∥λx∥∞.

L’égalité est établie.

⋆ Séparation : soit x = (x1, · · · , xd) ∈ Kd tel que ∥x∥∞ = 0. Alors ∀k ∈ J1, dK, 0 ≤ |xk| ≤ ∥x∥∞ = 0 ou
encore x = 0.

⋆ Inégalité triangulaire : soient x = (xk)1≤k≤d , y = (yk)1≤k≤d ∈ Kd. Alors :

∀k ∈ J1, dK, |xk + yk| ≤ |xk|+ |yk| ≤ ∥x∥∞ + ∥y∥∞
puis ∥x+ y∥∞ ≤ ∥x∥∞ + ∥y∥∞. ■

Théorème 5 : Quelques Normes en Dimension Finie :

Supposons que E est de dimension finie d ∈ N∗ et soit B = (e1, · · · , ed) une base de E. Pour tout x =

d∑
k=1

xiei ∈ E,

on définit

∥x∥1,B =

d∑
k=1

|xk| , ∥x∥2,B =

(
d∑
k=1

|xk|
2

) 1
2

, ∥x∥∞,B = max
1≤k≤d

|xk| .

Les applications ∥x∥1,B, ∥x∥2,B et ∥x∥∞,B sont des normes sur E.

Démonstration. Analogue à celle du Théorème 4. ■

Théorème 6 : Normes de Matrices :

Soit p ∈ N∗. Les applications
∥·∥1 : Mp(K) −→ R+

A = (ai,j)1≤i,j≤p 7−→ max
1≤j≤p

(
p∑
i=1

|ai,j|

)
et

∥·∥∞ : Mp(K) −→ R+

A = (ai,j)1≤i,j≤p 7−→ max
1≤i≤p

 p∑
j=1

|ai,j|


sont des normes sur Mp (K).

5



Démonstration. Facile à établir en utilisant les mêmes techniques que précédement. ■

Théorème 7 : Norme Infinie des Fonctions :

Soit (E, ∥·∥) un espace vectoriel normé et X une partie non vide de E. Soit B (X, E) l’espace des applications bornées
de X dans E ie. l’ensemble des applications f : X −→ E vérifiant ∃M ≥ 0/∀x ∈ X, ∥f(x)∥ ≤M. Alors l’application

∥·∥∞ : B(X, E) −→ R+

f 7−→ sup
x∈X

∥f(x)∥

est une norme sur B(X, E) appelée norme infinie.

Démonstration. Pour f ∈ B(X, E), la partie {∥f(x)∥ , x ∈ X} est non vide et majorée dans R+ donc admet une borne
supérieure dans R+. Ceci montre que la norme infinie est bien définie et vérifie l’axiome de positivité.

• Homogénéité : Soient f ∈ B(X, E) et λ ∈ K. Soit x ∈ X. La propriété est immédiate si λ = 0. Supposons
dorénavant le contraire. Alors,

∥(λf)(x)∥ = ∥λf(x)∥
= |λ| ∥f(x)∥
≤ |λ| sup

x∈X
∥f(x)∥

≤ |λ| ∥f∥∞ .
Par définition de la borne supérieure, ∥λf∥∞ ≤ |λ| ∥f∥∞. Maintenant, soit ε > 0. Tant que |λ| > 0, alors

∃x0 ∈ X/ ∥f∥∞ −
ε

|λ|
< ∥f (x0)∥

par caractérisation de la borne supérieure. Ainsi, |λ| ∥f∥∞ − ε < |λ| ∥f (x0)∥ = ∥(λf) (x0)∥. Ainsi, |λ| ∥f∥∞ =
sup
x∈X

∥(λf)(x)∥ = ∥λf∥∞.

• Séparation : soit f ∈ B(X, E). Supposons que ∥f∥∞ = 0. Alors ∀x ∈ X, 0 ≤ ∥f(x)∥ ≤ 0 puis ∀x ∈ X, f(x) = 0.
Ceci donne f = 0.

• Inégalité triangulaire : soient f, g ∈ B(X, E). Alors,

∀x ∈ X, ∥(f+ g)(x)∥ = ∥f(x) + g(x)∥ ≤ ∥f(x)∥+ ∥g(x)∥ ≤ ∥f∥∞ + ∥g∥∞ .
Ainsi, ∥f+ g∥∞ ≤ ∥f∥∞ + ∥g∥∞. ■

Théorème 8 : Norme Produit :

Soient p ∈ N∗ et (E1, N1) , · · · , (Ep, Np) p espaces vectoriels normés. L’application

φ :

p∏
k=1

Ek −→ R+

(x1, · · · , xp) 7−→ max (N1 (x1) , · · · , Np (xp))

est une norme sur
p∏
k=1

Ek.

Démonstration. Simple et analogue aux précédantes. ■

Théorème 9 : Distance Associée à une Norme :

Soit (E, ∥·∥) une espace vectoriel normé. Alors l’application d définie par ∀(x, y) ∈ E2, d(x, y) = ∥x− y∥ est une
distance sur E.
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Démonstration. d est bien définie sur E× E et est à valeurs dans R+ par positivité de la norme. Soit (x, y) ∈ E2.
Ainsi, d(x, y) = 0 ⇐⇒ ∥x− y∥ = 0 ⇐⇒ x − y = 0 ⇐⇒ x = y en vertu de l’axiome de séparation pour la norme ∥·∥.
De plus, d(x, y) = ∥x− y∥ = ∥y− x∥ = d(y, x). Finalement, pour z ∈ E :

d(x, y) = ∥x− y∥ = ∥(x− z) + (z− y)∥ ≤ ∥x− z∥+ ∥z− y∥ = d(x, z) + d(y, z).

On a montré que (E, d) est un espace métrique. ■

Théorème 10 : Distance d’une Partie :

Soit A une partie non vide d’un espace métrique (E, d). Alors

∀(x, y) ∈ E2, |d(x,A) − d(y,A)| ≤ d(x, y).

Démonstration. Soient (x, y) ∈ E2 et a ∈ A. Alors, d(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a), donc

d(x,A) − d(x, y) ≤ d(y, a).

Ainsi, d(x,A) − d(x, y) ≤ d(y,A) par définition de la borne inférieure. Ceci donnera d(x,A) − d(y,A) ≤ d(x, y). Par
symétrie des rôles, on trouvera d(y,A) − d(x,A) ≤ d(x, y) puis |d(x,A) − d(y,A)| ≤ d(x, y) (on dira que la fonction
“distance à une partie” est 1-lipschitzienne). ■

Dans toute la suite, (E, ∥·∥) est un espace vectoriel normé.

Théorème 11 : Unicité de la Limite :

Soit (un)n∈N ∈ EN.

Si (un)n∈N converge vers ℓ, alors sa limite est unique. Dorénavant, on peut dire dans tel cas que “ℓ est la limite de
(un)n∈N” et écrire “ℓ = lim

n→+∞un”.

Démonstration. Supposons que (un)n∈N converge dans (E, ∥·∥) disons vers deux vecteurs ℓ1 et ℓ2 non nécessaire-
ment distincts. Soit ε > 0. Alors

∃N1 ∈ N/∀n ≥ N1, ∥un − ℓ1∥ <
ε

2
et

∃N2 ∈ N/∀n ≥ N2, ∥un − ℓ2∥ <
ε

2
.

Soit N = max (N1, N2). Alors ∀n ≥ N,

∥ℓ1 − ℓ2∥ = ∥(un − ℓ2) − (un − ℓ1)∥ ≤ ∥un − ℓ2∥+ ∥un − ℓ1∥ <
ε

2
+
ε

2
= ε.

Ainsi, ∀ε > 0, ∥ℓ1 − ℓ2∥ < ε. Maintenant, si ℓ1 ̸= ℓ2, alors ∥ℓ1 − ℓ2∥ > 0 donc ∥ℓ1 − ℓ2∥ <
∥ℓ1 − ℓ2∥

2
puis 1 <

1

2
.

Ceci est absurde. On en déduit que ℓ1 = ℓ2. ■

Théorème 12 : Linéarité de la Limite :

Soient (un)n∈N , (vn)n∈N ∈ EN et λ, µ ∈ K. Supposons que les deux suites convergent respectivement vers ℓ1 et ℓ2.
Alors la suite du terme général λun + µvn converge et est de limite λℓ1 + µℓ2.

Démonstration. Soit ε > 0. Il existe un rang N1 à partir duquel ∥un − ℓ1∥ <
ε

2(|λ|+ 1)
et un rang N2 à partir

duquel ∥vn − ℓ2∥ <
ε

2(|µ|+ 1)
. Soit n ≥ max (N1, N2).

∥(λun + µvn) − (λℓ1 + µℓ2)∥ = ∥λ (un − ℓ1) + µ (vn − ℓ2)∥
≤ |λ| ∥un − ℓ1∥+ |µ| ∥vn − ℓ2∥

≤ |λ|
ε

2(|λ|+ 1)
+ |µ|

ε

2(|µ|+ 1)

≤ ε

2
+
ε

2

= ε.

Le théorème est établi. ■
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Théorème 13 : Limite et Norme :

Soit (un)n∈N ∈ EN.

Si (un)n∈N tend vers ℓ, alors (∥un∥)n∈N tend vers ∥ℓ∥.

Démonstration. Pour tout entier naturel n, |∥un∥− ∥ℓ∥| ≤ ∥un − ℓ∥. Or le membre de droite de l’inégalité tend
vers 0 par hypothèse, ce qui fournit la convergence désiriée. ■

Théorème 14 : Convergence et Bornitude :

Si une suite converge, alors elle est bornée.

Démonstration. Supposons qu’une suite (un)n∈N ∈ EN converge vers ℓ. Alors il existe un range N à partir duquel
∥un − ℓ∥ < 1. Ainsi,

∀n ≥ N, ∥un∥ ≤ ∥un − ℓ∥+ ∥ℓ∥ < 1+ ∥ℓ∥ .

Le réel M = max (∥u0∥ , · · · , ∥uN−1∥ , 1+ ∥ℓ∥) est alors un majorant de la suite du terme général ∥un∥. ■

Théorème 15 : Convergence en Norme Produit :

Soient p ∈ N∗ et (E1, N1) , · · · (Ep, Np) p espaces vectoriels normés. Soit (an)n∈N ∈

(
p∏
k=1

Ek

)N

de terme général

(
a(1)n , · · · , a(p)n

)
. Finalement, notons φ la norme produit sur

p∏
k=1

Ek.

(an)n∈N converge dans

(
p∏
k=1

Ek, φ

)
si et seuelement si ∀k ∈ J1, pK,

(
a(k)n

)
n∈N

converge dans (Ek, Nk). Dans tel

cas,

lim
n→+∞an =

(
lim

n→+∞a(k)n
)
1≤k≤p

.

Démonstration. =⇒) Supposons que (an)n∈N converge disons vers ℓ =
(
ℓ(1), · · · , ℓ(p)

)
. Alors

φ (an − ℓ) = φ
(
a(1)n − ℓ(1), · · · , a(p)n − ℓ(p)

)
−−−−−→
n→+∞ 0.

Soit n ∈ N et k ∈ J1, pK. Alors Nk
(
a(k)n − ℓ(k)

)
≤ φ (an − ℓ) −−−−−→

n→+∞ 0. Donc
(
a(k)n

)
n∈N

converge dans (Ek, Nk) et

vers ℓ(k).

⇐=) Réciproquement, on suppose que chaque composante
(
a(k)n

)
n∈N

de la suite du terme général an converge

vers ℓ(k). Soit ε > 0. Alors,

∀k ∈ J1, pK, ∃nk ∈ N/∀n ≥ nk, Nk

(
a(k)n − ℓ(k)

)
< ε.

Soit n∞ = max
1≤k≤p

nk. Soit n ≥ n∞. Alors ∀k ∈ J1, pK, Nk

(
a(k)n − ℓ(k)

)
< ε puis

φ (an − ℓ) = max
1≤k≤p

Nk

(
a(k)n − ℓ(k)

)
< ε.

Ceci montre que an −−−−−→
n→+∞ ℓ sous la norme produit. ■
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Théorème 16 : Valeur d’Adhérence :

Soit (un)n∈N ∈ EN et a ∈ E.

Les propositions suivantes sont équivalentes :

(1) a est une valeur d’adhérence de (un)n∈N.

(2) Il existe une extractrice φ telle que lim
n→+∞uφ(n) = a.

(3) ∀ε > 0,∀n0 ∈ N,∃n ≥ n0/ ∥un − a∥ < ε.

(4) ∀ε > 0, card ({n ≥ 0, ∥un − a∥ < ε}) = +∞.

Démonstration. (1) ⇐⇒ (2) est la définition. (3) ⇐⇒ (4) est claire. Montrons (2) ⇐⇒ (3).

=⇒) Soit ε > 0. Supposons qu’il existe une extractrice φ telle que pour tout qu’il existe un rang N à partir duquel∥∥uφ(n) − a
∥∥ < ε. Soit n0 ∈ N. Posons n = max (φ(N), n0). Alors n ≥ n0 et ∥un − a∥ < ε.

⇐=) Réciproquement, supposons (3). Alors en particulier pour ε = 1 et n0 = 0, ∃k ≥ 0/ ∥uk − a∥ < 1. Posons
φ(0) = k.

Maintenant, ∃k ′ ≥ φ(0) + 1/ ∥uk ′ − a∥ < 1

2
. Notons φ(1) = k ′. Ainsi, φ(1) > φ(0) et

∥∥uφ(1) − a
∥∥ < 1

2
.

Soit n ∈ N. Supposons que l’on a construit φ(0) < φ(1) < · · · < φ(n) de sorte que

∀p ∈ J0, nK,
∥∥uφ(p) − a

∥∥ < 1

1+ p
.

Ainsi, ∃k̃ ≥ φ(n)+1/
∥∥u
k̃
− a

∥∥ < 1

n+ 2
. En notant φ(n+1) = k̃, on obtient φ(n+1) > φ(n) et

∥∥uφ(n+1) − a
∥∥ <

1

n+ 2
. Ainsi, on a construit par récurrence une extractrice φ de sorte que

∀n ∈ N,
∥∥uφ(n) − a

∥∥ < 1

1+ n
.

Ceci montre que uφ(n) −−−−−→
n→+∞ a. L’équivalence est établie. ■

Théorème 17 : Boule Ouverte :

Toute boule ouverte est ouverte.

Démonstration. Soient r > 0 et x ∈ E. Soit y ∈ B(x, r).

•x

r

yε
•

Alors ∥x− y∥ < r. Posons ε = r− ∥x− y∥ > 0. Soit t ∈ B(y, ε). Alors

∥x− t∥ = ∥x− y+ y− t∥
≤ ∥x− y∥+ ∥y− t∥
< ∥x− y∥+ ε

9



= r

Ainsi, B(y, ε) ⊂ B(x, r). On a montré que ∀y ∈ B(x, r), ∃ε > 0/ B(y, ε) ⊂ B(x, r), ou encore que B(x, r) est un
ouvert. ■

Théorème 18 : Ouverture et Réunion/Intersection :

• Une réunion quelconque d’ouverts est un ouvert.

• Une intersection finie d’ouverts est un ouvert.

Démonstration. Le résultat est clair si la réunion (resp. l’intersection) est vide.

• Soit O une famille non vide d’ouverts. Soit X =
⋃
O∈O

O. Soit x ∈ X. Alors ∃O0 ∈ O/ x ∈ O0. Mais O0 est un

ouvert, fournissant l’existance de ε > 0 tel que B(x, ε) ⊂ O0 ⊂ X. On a montré que X est un ouvert.

• Soient n ∈ N∗ puis O1, · · · , On n ouverts. Soit X =

n⋂
i=1

Oi. Soit x ∈ X. Alors ∀i ∈ J1, nK, x ∈ Oi donc

∀i ∈ J1, nK, ∃εi > 0/ B (x, εi) ⊂ Oi.

Soit ε = min
1≤i≤n

εi. Alors ∀i ∈ J1, nK, B(x, ε) ⊂ B (x, εi) puis ∀i ∈ J1, nK, B(x, ε) ⊂ Oi ou encore B(x, ε) ⊂
n⋂
i=1

Oi =

X. ■

Théorème 19 : Ouverture et Produit Cartésien :

Soient p ∈ N∗ et (E1, N1) , · · · , (Ep, Np) p espaces vectoriels normés. Munissons E1× · · · ×Ep de la norme produit φ.

Si O1, · · · , Op sont des ouverts respectifs de E1, · · · , Ep, alors O1 × · · · ×Op est un ouvert de E1 × · · · × Ep.

Démonstration. Soit x = (x1, · · · , xp) ∈
p∏
i=1

Oi. Alors ∀i ∈ J1, pK, xi ∈ Oi. Donc ∀i ∈ J1, pK,∃εi > 0/ B (xi, εi) ⊂

Oi. Soit ε = min
1≤i≤p

εi. Soit y = (y1, · · · , yp) ∈ BE1×···×Ep
(x, ε). Alors φ (x− y) = φ (x1 − y1, · · · , xp − yp) < ε.

Ainsi, ∀i ∈ J1, pK, Ni (xi − yi) < ε ≤ εi. Ainsi, ∀i ∈ J1, pK, yi ∈ B (xi, εi). Ainsi,

BE1×···×Ep
(x, ε) ⊂

p∏
i=1

B (xi, εi) ⊂
p∏
i=1

Oi.

Ainsi,
p∏
i=1

Oi est un ouvert. ■

Théorème 20 : Caractérisation Séquentielle de la Fermeture :

Soit A ⊂ E.

A est fermé si et seulement si toute suite convergente à éléments dans A est de limite dans A.

Démonstration. =⇒) Supposons que A est fermé. Donc Ac est ouvert. Soit (xn)n∈N une suite convergente à
éléments dans A de limite, disons ℓ. Supposons par absurde que ℓ /∈ A.

• • ℓA
•
x0

•
x1

•
x2

•
x3

•••••••

Puisque (xn)n∈N devient
arbitrairement proche
de ℓ, des termes seraient
forcés à sortir de A sous
l’hypothèse que ℓ /∈ A.
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Puisque ℓ ∈ Ac qui est un ouvert, alors il existe ε0 > 0 tel que B (ℓ, ε0) ⊂ Ac. Maintenant, ∃N ∈ N/∀n ≥
N, ∥xn − ℓ∥ < ε0. Ainsi, xN est un terme de la suite qui est dans B (ℓ, ε0) ⊂ Ac donc xN /∈ A. Ceci est absurde. On
a montré que ℓ ∈ A.

⇐=) Inversement, raisonnons par contraposée. Supposons que A n’est pas un fermé. Construisons une suite con-
vergente à éléments dans A de limite qui n’est pas dans A.

Ac n’est pas un ouvert. Alors il existe x ∈ Ac tel que ∀ε > 0, B(x, ε) ̸⊂ Ac ou encore

∀ε > 0, B(x, ε) ∩A ̸= ∅.

Soit n ∈ N. Alors B
(
x,

1

n+ 1

)
∩A ̸= ∅ ou encore,

∀n ∈ N,∃xn ∈ A/ xn ∈ B
(
x,

1

n+ 1

)
∩A.

Ainsi, (xn)n∈N ∈ AN et xn −−−−−→
n→+∞ x bien que x /∈ A. La caractérisation est établie. ■

Théorème 21 : Boule Fermée :

Toute boule fermée est fermée.

Démonstration. Soit x ∈ E et r > 0. Montrons que (Bf(x, r))
c est un ouvert. Soit y ∈ (Bf(x, r))

c. Alors,
∥x− y∥ > r.

•x

r

•x

r

E

•
y

Posons alors ε = ∥x− y∥− r > 0. Soit t ∈ B(y, ε). Alors ∥y− t∥ < ε puis

∥x− t∥ = ∥(x− y) − (t− y)∥
≥
∣∣ ∥x− y∥− ∥t− y∥

∣∣
= ∥x− y∥− ∥t− y∥
> ∥x− y∥− ε
= r.

Ainsi, t ∈/∈ Bf(x, r). On a montré que ∀y ∈ (B(x, r))
c
, ∃ε > 0/ B(y, ε) ⊂ (Bf(x, r))

c, ou encore, que Bf(x, r) est un
fermé. ■

Théorème 22 : Fermeture et Réunion/Intersection :

• Une réunion finie de fermés est un fermé.

• Une intersection quelconque de fermés est un fermé.

Démonstration. Le résultat est clair si la réunion (resp. intersection) est vide. Supposons le contraire.

11



• Soient n ∈ N∗ et F1, · · · , Fn n fermés. Soit X =

n⋃
i=1

Fi. Alors Xc =

n⋂
i=1

Fci donc sera un ouvert par stabilité de

l’ouverture par intersection finie. Ainsi, X est fermé.

• Soient F une famille de fermés et X =
⋂
F∈F

F. Alors Xc =
⋃
F∈F

Fc. Ainsi, Xc est un ouvert tant que réunion

quelconque d’ouverts. On a montré que X est un fermé. ■

Théorème 23 : Fermeture et Produit Cartésien :

Soient p ∈ N∗ et (E1, N1) , · · · , (Ep, Np) p espaces vectoriels normés. Munissons E1× · · · ×Ep de la norme produit φ.

Si F1, · · · , Fp sont des fermés respectifs de E1, · · · , Ep, alors F1 × · · · × Fp est un fermé de E1 × · · · × Ep.

Démonstration. Soit (xn) =
((
x(1)n , · · · , x(p)n

))
n∈N

∈

(
p∏
i=1

Fi

)N

. Supposons que (xn)n∈N converge. Alors ∀i ∈

J1, pK,
(
x(i)n

)
n∈N

converge dans (Ei, Ni) disons vers ℓ(i). Puisque pour tout i ∈ J1, pK,
(
x(i)n

)
n∈N

∈ FNi et Fi est

fermé, alors ℓ(i) ∈ Fi puis
lim

n→+∞ xn =
(
ℓ(1), · · · , ℓ(p)

)
∈ F1 × · · · × Fp.

Ceci montre que F1 × · · · × Fp est un fermé. ■

Théorème 24 : Propriétés de l’Intérieur :

Soient A,B ⊂ E.

• Int(A) ⊂ A.
• Si A est un ouvert, alors Int(A) = A.
• Si A ⊂ B, alors Int(A) ⊂ Int(B).

Démonstration. • Le résultat est clair si Int(A) est vide. Supposons le contraire. Soit x ∈ Int(A). Alors
∃r > 0/ B(x, r) ⊂ A. En particulier, x ∈ B(x, r) ⊂ A. Donc x ∈ A.

• Supposons que A est un ouvert. Si A = ∅, rien à montrer. Supposons que A est non vide. Soit x ∈ A. Alors
∃r > 0/ B(x, r) ⊂ A. Mais ceci montre que x ∈ Int(A) donc A ⊂ Int(A) puis l’égalité.

• Si l’un de Int(A) ou Int(B) est vide, la propriété est évidente. Supposons qu’aucun n’est vide. Soit x ∈ Int(A).
Donc ∃r > 0/ B(x, r) ⊂ A ⊂ B. Donc x ∈ Int(B). On a montré l’inclusion. ■

Théorème 25 : Caractérisation de l’Intérieur :

Soit A ⊂ E.

Int(A) est le plus grand ouvert de E (au sens de l’inclusion) contenu dans A.

Démonstration. La propriété est immédiate si A = ∅. Supposons le contraire.

D’abord, Int(A) est un ouvert contenu dans A; soit x ∈ Int(A). Alors ∃r > 0/ B(x, r) ⊂ A donc Int(B(x, r)) ⊂
Int(A). Mais B(x, r) est ouvert, donc ∃r > 0/ B(x, r) ⊂ Int(A). On a montré que Int(A) est un ouvert et, de plus,
Int(A) ⊂ A d’après le dernier Théorème.

Soit B un ouvert dans A. Montrons que B ⊂ Int(A). Mais B ⊂ A, donc Int(B) ⊂ Int(A) et par ouverture de B, on
obtient Int(B) = B, puis l’inclusion désiriée. La propriété est établie. ■
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Théorème 26 : Propriétés de l’Adhérence :

Soient A ⊂ E.

• A ⊂ Adh(A).
• Si A est fermé, alors A = Adh(A).
• Adh(A)c = Int (Ac).
• Adh (Ac) = Int (A)

c.

Démonstration. • Si A = ∅, c’est immédiat. Sinon, soit x ∈ A. Soit r > 0. Alors x ∈ A ∩ B(x, r) et en particulier
A ∩ B(x, r) ̸= ∅, donc x ∈ Adh(A). L’inclusion est établie.

• Supposons queA est fermé. SiA est vide, c’est immédiat. Sinon, soit x ∈ Adh(A). Alors ∀r > 0, B(x, r)∩A ̸= ∅.
En particulier,

∀n ∈ N, ∃xn ∈ A/ xn ∈ B
(
x,

1

n+ 1

)
.

Ainsi, (xn)n∈N est une suite convergente vers x est qui est à éléments dans A qui est fermé. Ainsi, x ∈ A puis
Adh(A) ⊂ A ou encore Adh(A) = A.

• Soit x ∈ E.

x ∈ Adh(A)c ⇐⇒ ∃r > 0/ B(x, r) ∩A = ∅⇐⇒ ∃r > 0/ B(x, r) ⊂ Ac⇐⇒ x ∈ Int (Ac) .

L’égalité est démontrée.

• Maintenant, (Adh (Ac))
c
= Int

(
(Ac)

c)
= Int(A) d’après le dernier point. On obtient l’égalité par passage au

complémentaire. ■

Théorème 27 : Caractérisation de l’Adhérence :

Soit A ⊂ E.

Adh(A) est le plus petit fermé de E (au sens de l’inclusion) contenant dans A.

Démonstration. Encore une fois, le cas où A est vide est trivial. Supposons le contraire. Adh(A) est un fermé qui
contient A ; déjà A ⊂ Adh(A) et Adh(A)c = Int (Ac) est un ouvert, donc Adh(A) est fermé. Maintenant, soit F un
fermé tel que A ⊂ F. Donc Fc ⊂ Ac puis Int (Fc) = Fc︸ ︷︷ ︸

Fc est ouvert

⊂ Int (Ac) = Adh(A)c. Ainsi, Adh(A) ⊂ F. Ceci montre la

propriété. ■

Théorème 28 : Caractérisation Séquentielle de l’Adhérence :

Soit A une partie non vide de E.

x est adhérant à A si et seulement si il existe une suite à valeurs dans A qui converge vers x. Autrement dit,

x ∈ A⇐⇒ ∃ (xn)n∈N ∈ AN/ lim
n→+∞ xn = x.

Démonstration. Soit x ∈ E.

=⇒) Supposons que x ∈ A. Alors ∀ε > 0, B(x, ε) ∩A ̸= ∅. Ainsi,

∀n ∈ N, ∃xn ∈ A/ xn ∈ B
(
x,

1

n+ 1

)
.

Ainsi, la suite (xn)n∈N ∈ AN et tend vers x.

⇐=) Supposons qu’il existe une suite de terme général xn à termes dans A et qui tend vers x. Soit ε > 0. Alors
il existe un rang N ∈ N à partir duquel un ∈ B(x, ε). Ainsi, uN ∈ A ∩ B(x, ε) et en particulier, A ∩ B(x, ε) ̸= ∅. La
caractérisation est étbalie. ■
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Théorème 29 : Ouvert Relatif :

Soit A ⊂ E. Soit OA ⊂ A. Les propositions suivantes sont équivalentes :

• OA est un ouvert relatif de A.
• ∀x ∈ OA, ∃r > 0/ A ∩ B(x, r) ⊂ OA.
• Il existe un ouvert O de E tel que OA = O ∩A.

Démonstration. =⇒) Supposons que ∀x ∈ OA, ∃rx > 0/ A∩B (x, rx) ⊂ OA. Posons O =
⋃
x∈OA

B (x, rx). Alors O

est un ouvert de E et OA = A ∩O car OA ⊂ O et OA ⊂ A donc OA ⊂ O ∩A, puis :

O ∩A =

( ⋃
x∈OA

B (x, rx)

)
∩A =

( ⋃
x∈OA

B (x, rx) ∩A

)
⊂

( ⋃
x∈OA

OA

)
= OA.

⇐=) Supposons qu’il existe un ouvert O de E tel que OA = O ∩A. Soit x ∈ OA. Alors x ∈ O et x ∈ A. Ainsi, il
existe r > 0 tel que B(x, r) ⊂ O. Donc B(x, r) ∩A ⊂ O ∩A = OA. La propriété est démontrée. ■

Théorème 30 : Fermé Relatif :

Soit A ⊂ E. Soit FA ⊂ A. Les propositions suivantes sont équivalentes :

• FA est un fermé relatif de A.
• A \ FA est un ouvert relatif dans A.
• Il existe un fermé F de E tel que FA = F ∩A.

Démonstration. =⇒) Supposons que OA = A \ FA est un ouvert relatif dans A. Alors FA = A ∩OcA. Maintenant,
il existe un ouvert O de E tel que OA = O ∩A. Alors

FA = A ∩ (O ∩A)c = A ∩ (Ac ∪Oc) = (A ∩Ac) ∪ (A ∩Oc) = A ∩Oc.

Ainsi, Oc est est fermé (car est le complémentaire d’un ouvert) et, finalement, FA est l’intersection de A et un fermé
de E.

⇐=) Réciproquement, supposons qu’il existe un fermé F de E tel que FA = A ∩ F. Alors,

FA = A ∩ (Fc)
c
= A ∩

(
(Fc)

c ∪Ac
)
= A ∩ (Fc ∩A)c = A \ (Fc ∩A) .

Ainsi, OA := Fc ∩A est un ouvert relatif de A. Ceci montre la propriété. ■

Théorème 31 : Caractérisation Séquentielle d’un Fermé Relatif :

Soient A une partie de E et F ⊂ A.

F est un fermé relatif si et seuelement si pour toute suite à éléments dans F, si elle converge vers ℓ dans A, alors ℓ ∈ F.

Démonstration. =⇒) Supposons que F est un fermé relatif de A. Soit FE un fermé de E tel que F = FE ∩ A. Soit
(xn)n∈N une suite à éléments dans F qui converge vers ℓ ∈ A. Ainsi, (xn)n∈N est en particulier à éléments dans FE.
Donc ℓ ∈ FE puis ℓ ∈ FE ∩A = F. La propriété est démontrée.

⇐=) Supposons que F n’est pas un fermé relatif de A. Alors A \ F n’est pas un ouvert relatif de A. Ainsi,

∃x ∈ A \ F/∀ε > 0, A ∩ B(x, ε) ̸⊂ A \ F.

Ainsi, x est fixe et
∀ε > 0, A ∩ B(x, ε) ∩ (A \ F)

c ̸= ∅.

Mais A ∩ B(x, ε) ∩ (A \ F)
c
= A ∩ B(x, ε) ∩ (A ∩ Fc)c = A ∩ B(x, ε) ∩ (Ac ∪ F) = A ∩ B(x, ε) ∩ F = F ∩ B(x, ε). Ainsi,

∀n ∈ N,∃xn ∈ F/ xn ∈ B
(
x,

1

n+ 1

)
.

Ainsi, (xn)n∈N est à valeurs dans F et tend vers x ∈ A \ F. Ceci achève la démonstration. ■
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Dorénavant, (E,N) et (F,N ′) sont deux espaces vectoriels normés, A ⊂ E et f : A −→ F.

Théorème 32 : Caractérisation Séquentielle de la Limite d’une Fonction :

Soit a un point adhérant à A.

La fonction f tend vers ℓ lorsque x tend vers a si et seulement si pour toute suite (xn)n∈N à valeurs dans A convergente
vers a, la suite (f (xn))n∈N converge et tend vers ℓ. Autrement dit,

lim
x→a f(x) = ℓ⇐⇒

(
∀ (xn)n∈N ∈ AN, lim

n→+∞ xn = a =⇒ lim
n→+∞ f (xn) = ℓ

)
.

Démonstration. =⇒) Supposons que f tend vers ℓ lorsque x tend vers a. Soit (xn)n∈N une suite d’éléments de A
qui tend vers a. Soit ε > 0 et x ∈ A. Alors il existe δ > 0 tel que si N (x− a) < δ, alors N ′ (f(x) − ℓ) < ε.

Idem, il existe un rang N tel que si n ≥ N, alors N (xn − a) < δ. Mais alors ∀n ≥ N, N (xn − a) < δ =⇒
N ′ (f (xn) − ℓ) < ε. On a montré que la suite du terme général f (xn) converge et, de plus, tend vers ℓ.

⇐=) Démontrons la réciproque par contraposition. Supposons que f(x) ne tend pas vers ℓ quand x tend vers a.
Donc

∃ε0 > 0/∀δ > 0, ∃x ∈ A/ N (x− a) < δ et N ′ (f(x) − ℓ) ≥ ε0 (∗).

Construisons une suite (xn)n∈N d’éléments dans A qui converge vers a bien que (f (xn))n∈N ne tend pas vers ℓ.

Soit n ∈ N. La proposition (∗) fournit

∀n ∈ N, ∃xn ∈ A/ N (xn − a) <
1

n+ 1
et N ′ (f (xn) − ℓ) ≥ ε0.

La suite du terme général est à valeurs dans A et tend vers a, bien que (f (xn))n∈N ne tend pas vers ℓ. L’équivalence
est établie. ■

Théorème 33 : Unicité de la Limite d’une Fonctions :

Si f admet une limite en un point, alors celle-ci est unique.

Démonstration. Supposons qu’il existe deux vecteurs ℓ1 et ℓ2 vers lesquels f tend lorsque x tend vers a. Soit une
suite (xn)n∈N à éléments dans A qui tend vers a. Alors ℓ1 = lim

n→+∞ f (xn) = ℓ2 et c’est fini par unicité de la limite
d’une suite. ■

Théorème 34 : Caractérisation Séquentielle de Limite en ±∞ :

Supposons que E = R.

• Supposons que A est non minorée. f tend vers ℓ quand x tend vers −∞ si et seuelement si pour toute suite (xn)n∈N
d’éléments dans A qui tend vers −∞, (f (xn))n∈N tend vers ℓ.

• Supposons que A est non majorée. f tend vers ℓ quand x tend vers +∞ si et seuelement si pour toute suite (xn)n∈N
d’éléments dans A qui tend vers +∞, (f (xn))n∈N tend vers ℓ.

Démonstration. La construction est analogue à celle du Théorème 32. ■

Théorème 35 : Limite de Fonction sur un Espace Produit :

Soient p ∈ N∗ et E1, · · · , Ep p espaces vectoriels normés. Supposons que f : A −→ p∏
k=1

Ek

x 7−→ (f1(x), · · · , fp(x))

.

f admet une limite ℓ = (ℓ1, · · · , ℓp) ∈
p∏
k=1

Ek en a si et seuelement si ∀k ∈ J1, pK, fk admet une limite en a et

lim
x→a fk(x) = ℓk.
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Démonstration. On utilisera la caractèrisation séquentielle de la limite d’une fonction et le Théorème 15. ■

Théorème 36 : Linéarité de la Limite :

Soient f1, f2 : A −→ F et λ1, λ2 ∈ K.

Si f1 −−−→
x→a ℓ1 et f2 −−−→

x→a ℓ2, alors
λ1f1 + λ2f2 −−−→

x→a λ1ℓ1 + λ2ℓ2.

Démonstration. On utilise la caractèrisation séquentielle de la convergence. ■

Théorème 37 : Linéarité de la Limite :

Soient f : A −→ F et φ : A −→ K.

Si f −−−→
x→a ℓ et φ −−−→

x→a λ, alors
φf −−−→

x→a λℓ

où φf : A −→ F

x 7−→ φ(x)f(x)

.

Démonstration. Soit (xn)n∈N une suite d’éléments de A qui tend vers a. Soit n ∈ N.

∥φ (xn) f (xn) − λℓ∥ = ∥φ (xn) f (xn) −φ (xn) ℓ+φ (xn) ℓ− λℓ∥
= ∥φ (xn) (f (xn) − ℓ) + ℓ (φ (xn) − λ)∥
≤ |φ (xn)| ∥f (xn) − ℓ∥+ |ℓ| ∥φ (xn) − λ∥ .

(φ (xn))n∈N est bornée car elle est convergente. Ainsi, ∥φ (xn) f (xn) − λℓ∥ −−−−−→
n→+∞ 0. Ceci achève la démonstration.

■

Théorème 38 : Limite et Quotient :

Soit f : A −→ K.

Si f −−−→
x→a ℓ et ℓ ̸= 0, alors

1

f
est bien définie sur un voisinage relatif de a et

1

f
−−−→
x→a 1

ℓ
.

Démonstration.
1

f
est bien définie sur au moins un voisinage relatif de a, car

∃η > 0/∀x ∈ A ∩ B(a, η), |f(x) − ℓ| <
|ℓ|

2
;

ainsi, ∀x ∈ A ∩ B(a, η), |ℓ|− |f(x)| ≤ ||ℓ|− |f(x)|| ≤ |ℓ− f(x)| <
|ℓ|

2
puis |f(x)| >

ℓ

2
et en particulier f(x) ̸= 0.

Soit (xn)n∈N une suite à éléments dans A qui tend vers a. A partir d’un certain rang,
(

1

f (xn)

)
n∈N

est bien définie

puis ∣∣∣∣ 1

f (xn)
−
1

ℓ

∣∣∣∣ = |ℓ− f (xn)|

|ℓ| |f (xn)|
<

1

|ℓ|
|ℓ|

2

|f (xn) − ℓ| =
2

|ℓ|
2
|f (xn) − ℓ| −−−−−→

n→+∞ 0.

D’où le résultat. ■

Théorème 39 : Le Théorème de Composition de Limites :

Soient E, F et G trois espaces vectoriels normés. Soient A ⊂ E et B ⊂ F, puis f : A −→ F et g : B −→ G tels que f(A) ⊂ B.

Si f −−−→
x→a b et g −−−→

y→b ℓ, alors g ◦ f −−−→
x→a ℓ.
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Démonstration. Soit (xn)n∈N ∈ AN tendant vers a. (f (xn))n∈N ∈ BN et tend vers b. En particulier, (g (f (xn)))n∈N =
((g ◦ f) (xn))n∈N tend vers ℓ. Le théorème est établi. ■

Théorème 40 : Les Théorèmes Généraux de Continuité :

• La combinaison linéaire de fonctions continue est continue.

• Le produit d’une fonction continue à valeurs dans K avec une fonction continue est continue.

• La composition de fonctions continue est continue.

• Si une fonction est à valeurs dans K et ne s’annule pas, alors son inverse est continue.

Démonstration. Résultats immédiats des théorèmes généraux sur les limites. ■

Théorème 41 : Fonction Lipschitzienne et Continuité :

Toute fonction lipschitzienne est continue.

Démonstration. Soit k ≥ 0 tel que ∀(x, y) ∈ A2, N ′ (f(x) − f(y)) ≤ kN(x − y). Soit ε > 0 et x ∈ A. Soit
η =

ε

k+ 1
. Alors η > 0 et

∀y ∈ A, y ∈ B(x, η) =⇒ N(x− y) <
ε

k+ 1

=⇒ kN(x− y) ≤ (k+ 1)N(x− y) < ε

=⇒ N ′ (f(x) − f(y)) < ε

=⇒ f(y) ∈ B(f(x), ε).

Ceci montre que f est continue en tout point x ∈ A. ■

Théorème 42 : Caractérisation de la Continuité par Préservation de l’Ouverture/Fermeture en
passant à l’Image Réciproque :

• f est continue sur A si et seuelement l’image réciproque de tout fermé de F par f est un fermé relatif de A.

• f est continue sur A si et seuelement l’image réciproque de tout ouvert de F par f est un ouvert relatif de A.

Démonstration. Supposons que f continue sur A. Soit V un fermé de F. Si f−1(V) = ∅, c’est fini. Supposons le
contraire. Soit (xn)n∈N une suite d’éléments de f−1(V) qui converge dans A disons vers x. Ainsi,

∀n ∈ N, ∃yn ∈ V/ f (xn) = yn.

Puisque xn −−−−−→
n→+∞ x et f est continue, alors f (xn) = yn −−−−−→

n→+∞ f(x). Par fermeture de V, f(x) ∈ V ou encore

x ∈ f−1(V). On a montré que f−1(V) est un fermé relatif de A. On a montré que

f est continue sur A =⇒ l’image réciproque de tout fermé par f est un fermé relatif de A (∗).

Supposons que l’image réciproque de tout fermé par f est un fermé relatif de A. Soit O un ouvert de F. Alors F\O
est un fermé de F. Donc f−1(F \O) = A \ f−1(O) est un fermé relatif de A, ou encore f−1(O) est un ouvert relatif de
A. On a montré que

l’image réciproque de tout fermé est un fermé relatif =⇒ l’image réciproque de tout ouvert est un ouvert relatif (∗∗).

Supposons que l’image réciproque de tout ouvert est un ouvert relatif. Montrons la continuité. Soient y ∈ A et
ε > 0. B(f(y), ε) est un ouvert de F, donc f−1(B(f(y), ε)) est un ouvert relatif de A. Puisque y ∈ f−1(B(f(y), ε)) alors
il existe η > 0 tel que B(y, η) ∩A ⊂ f−1(B(f(x), ε)). Ceci montre la continuité de f en tout point y ∈ A. ■

Théorème 43 : Caractérisation de la Continuité d’une Application Linéaire :

Soit u ∈ L(E, F).

• u est continue si et seuelement si il existe un réel positif C tel que ∀x ∈ E, ∥u(x)∥ ≤ C ∥x∥.

• u est continue si et seuelement si elle est bornée sur la boule unité fermée.
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Démonstration. • =⇒) Supposons la continuité. L’inégalité est évidente pour x = 0. Soit x ∈ E\ {0}. La continuité
en 0 donne

∃η > 0/∀y ∈ E, ∥y∥ < η =⇒ ∥u(y)∥ < 1

2
.

Mais,
∥∥∥∥ η

2 ∥x∥
x

∥∥∥∥ =
η

2
< η. Donc

∥∥∥∥u( η

2 ∥x∥
x

)∥∥∥∥ =
η

2 ∥x∥
∥u(x)∥ < 1

2
ou encore ∥u(x)∥ ≤ 1

η
∥x∥. Ainsi, C =

1

η
convient.

⇐=) Réciproquement, supposons que ∃C ≥ 0/∀x ∈ E, ∥u(x)∥ ≤ C ∥x∥. Soient x, y ∈ E. Alors

∥u(x) − u(y)∥ = ∥u(x− y)∥ ≤ C ∥x− y∥ .

Ainsi, u est C-lipschitzienne, ce qui fournit la continuité.

• =⇒) Supposons que ∃C ≥ 0/∀x ∈ E, ∥u(x)∥ ≤ C ∥x∥. Soit x ∈ Bf(0, 1). Alors ∥u(x)∥ ≤ C ∥x∥ ≤ C et
l’implication est établie.

⇐=) Supposons que u est bornée sur la boule unité fermée. Soit x ∈ E \ {0}. Alors

∃C ≥ 0/
∥∥∥∥u( 1

∥x∥
x

)∥∥∥∥ =
1

∥x∥
∥u(x)∥ ≤ C.

Ceci fournit ∀x ∈ E \ {0}, ∥u(x)∥ ≤ C ∥x∥. Cette inégalité reste vraie pour x = 0. ■

Théorème 44 : Application Linéaire en Dimension Finie :

Toute application linéaire sur un espace de dimension finie est continue.

Démonstration. Soit u ∈ L(E, F). Supposons que E est de dimension finie p de base disons (e1, · · · , ep). Puisque
les normes sur E seront équivalentes, peu importe la norme choisie pour montrer la continuité. Montrons alors que u

est continue où E est muni de la norme infinie. Maintenant, soit x =
p∑
i=1

xiei ∈ E. Alors,

∥u(x)∥ =

∥∥∥∥∥u
(
p∑
i=1

xiei

)∥∥∥∥∥
=

∥∥∥∥∥
p∑
i=1

xiu (ei)

∥∥∥∥∥
≤

p∑
i=1

|xi| ∥u (ei)∥

≤
p∑
i=1

∥x∥∞ ∥u (ei)∥

= ∥x∥∞
p∑
i=1

∥u (ei)∥ .

Avec C =

p∑
i=1

∥u (ei)∥, on prouve la caractèrisation, ce qu’il fallait démontrer. ■

Théorème 45 : Norme Subordonnée d’une Application Linéaire Continue :

Soit u ∈ Lc(E, F).

L’ensemble {C ≥ 0, ∀x ∈ E, ∥u(x)∥ ≤ C ∥x∥} admet un minimum dit norme subordonnée de u et est notée |||u|||.
De plus,

|||u||| = sup
x̸=0

∥u(x)∥
∥x∥

= sup
∥x∥≤1

∥u(x)∥

= sup
∥x∥=1

∥u(x)∥.
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Démonstration. u est continue. Ainsi, ∃C ≥ 0/∀x ∈ E, ∥u(x)∥ ≤ C∥x∥. Ceci donne que
{
∥u(x)∥
∥x∥

, x ∈ E \ {0}

}
est une partie majorée et non vide de R, justifiant l’existance de sup

x̸=0

∥u(x)∥
∥x∥

.

Alternativement, u est bornée sur la boule unité fermé et en particulier sur la sphère unité, fournissant l’existance
de sup

∥x∥≤1
∥u(x)∥ et de sup

∥x∥=1
∥u(x)∥.

• Soit x ∈ E tel que ∥x∥ ≤ 1. Si x = 0, alors il est immédiat que ∥u(x)∥ = 0 ≤ sup
x̸=0

∥u(x)∥
∥x∥

. Sinon,

∥u(x)∥ ≤ ∥u(x)∥
∥x∥

≤ sup
x̸=0

∥u(x)∥
∥x∥

.

Ainsi, ∀x ∈ Bf(0, 1), ∥u(x)∥ ≤ sup
y̸=0

∥u(y)∥
∥y∥

puis, par définition de la borne supérieure,

sup
∥x∥≤1

∥u(x)∥ ≤ sup
x̸=0

∥u(x)∥
∥x∥

.

Inversement, soit x ̸= 0. Alors
∥u(x)∥
∥x∥

=

∥∥∥∥u( 1

∥x∥
x

)∥∥∥∥ ≤ sup
y∈Bf(0,1)

∥u(y)∥. Donc

sup
x̸=0

∥u(x)∥
∥x∥

≤ sup
∥x∥≤1

∥u(x)∥.

On a montré la première égalité.

• Déjà, S(0, 1) ⊂ Bf(0, 1), donc sup
∥x∥=1

∥u(x)∥ ≤ sup
∥x∥≤1

∥u(x)∥. Soit maintenant x ∈ E tel que ∥x∥ ≤ 1. Si ∥x∥ = 0, il

sera immédiat que ∥u(x)∥ = 0 ≤ sup
∥x∥=1

∥u(x)∥. Sinon,

∥u(x)∥ =

∥∥∥∥u(∥x∥
∥x∥

x

)∥∥∥∥
= ∥x∥

∥∥∥∥u( 1

∥x∥
x

)∥∥∥∥
≤ ∥x∥︸︷︷︸

≤1

sup
∥y∥=1

∥u(y)∥

≤ sup
∥y∥=1

∥u(y)∥.

Ainsi, ∀x ∈ Bf(0, 1), ∥u(x)∥ ≤ sup
∥y∥=1

∥u(y)∥ puis sup
∥x∥≤1

∥u(x)∥ = sup
∥x∥=1

∥u(x)∥. Ceci fournit la deuxième égalité.

• Finalement, montrons que M := sup
x̸=0

∥u(x)∥
∥x∥

= minA où A = {C ≥ 0, ∀x ∈ E, ∥u(x)∥ ≤ C ∥x∥}. Pour cela,

on va montrer que M ∈ A et que ∀C ∈ A , M ≤ C.

Soit x ∈ E. Il est immédiat que ∥u(x)∥ ≤M∥x∥ pour x = 0. Dorénavant, x ̸= 0. Alors
∥u(x)∥
∥x∥

≤ sup
y̸=0

∥u(y)∥
∥y∥

=M,

d’où ∥u(x)∥ ≤M∥x∥. On a montré que M ∈ A .

Maintenant, soit C ∈ A . Alors ∀x ̸= 0,
∥u(x)∥
∥x∥

≤ C. Ainsi, par définition de la borne supérieure, M =

sup
x̸=0

∥u(x)∥
∥x∥

≤ C. La propriété est (finalement) établie. ■

Théorème 46 : Norme Subordonnée :

Soient u ∈ Lc(E, F) et x ∈ E.

Alors ∥u(x)∥ ≤ |||u||| · ∥x∥.
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Démonstration. Par définition. ■

Théorème 47 : Sous-Multiplicativité :

Soient u ∈ Lc(E, F) et v ∈ Lc(F,G). Alors
|||v ◦ u||| ≤ |||u||| · |||v|||.

Démonstration. Soit x ∈ E tel que ∥x∥ = 1. Alors

∥ (v ◦ u) (x)∥ = ∥v(u(x))∥ ≤ |||v||| · ∥u(x)∥ ≤ |||v||| · |||u||| · ∥x∥ = |||v||| · |||u|||.

Ainsi, sup
∥x∥=1

∥(v ◦ u)(x)∥ ≤ |||v||| · |||u|||. Mais sup
∥x∥=1

∥(v ◦ u)(x)∥ = |||v ◦ u||| ce qui achève la démonstration. ■

Théorème 48 : Caractérisation de la continuité d’une Application Multilinéaire :

Soient p ∈ N∗ et E1, · · · , Ep p est espaces vectoriels normés. Munissons l’espace
p∏
k=1

Ek de sa norme produit. Soit F

un espace vectoriel normé.

Soit φ : E1 × · · · × Ep −→ F une application multilinéaire. Alors φ est continue si et seuelement si

∃C ≥ 0/∀ (x1, · · · , xp) ∈
p∏
k=1

Ek, ∥φ (x1, · · · , xp)∥ ≤ C
p∏
k=1

∥xk∥ .

Démonstration. =⇒) Supposons la continuité. Soit (xk)1≤k≤p ∈
p∏
k=1

Ek Si l’un des xk est nul, la propriété est

vérifiée pour n’importe quel C ≥ 0. Supposons le contraire.

Il existe alors η > 0 tel que pour tout (yk)1≤k≤p ∈
p∏
k=1

Ek, si ∥(y1, · · · , yp)∥ < η, alors ∥φ (y1, · · · , yp)∥ < 1. Or,

∥∥∥∥( η

2 ∥x1∥
x1, · · · ,

η

2 ∥xp∥
xp

)∥∥∥∥ =
η

2
< η.

Donc,
∥∥∥∥φ( η

2 ∥x1∥
x1, · · · ,

η

2 ∥xp∥
xp

)∥∥∥∥ < 1. Or

∥∥∥∥φ( η

2 ∥x1∥
x1, · · · ,

η

2 ∥xp∥
xp

)∥∥∥∥ =

∥∥∥∥ η

2 ∥x1∥
× · · · × η

2 ∥xp∥
φ (x1, · · · , xp)

∥∥∥∥
=
ηp

2p
1

p∏
k=1

∥xk∥
∥φ (x1, · · · , xp)∥ .

Ainsi,

∥φ (x1, · · · , xp)∥ ≤ 2p

ηp

p∏
k=1

∥xk∥ .

Donc C =
2p

ηp
convient.

⇐=) Supposons l’existance d’une constante C vérifiant telle inégalité.
Si p = 2, on est dans le cas d’une application bilinéaire. Soit ((xn, yn))n∈N ∈ (E1 × E2)N convergente vers

(x, y) ∈ E1 × E2. Alors

∀n ∈ N, ∥φ (xn, yn) −φ(x, y)∥ = ∥φ (xn, yn) +φ (xn, y) −φ (xn, y) −φ(x, y)∥
= ∥φ (xn, yn − y) +φ (xn − x, y)∥
≤ ∥φ (xn, yn − y)∥+ ∥φ (xn − x, y)∥
≤ C ∥xn∥ · ∥yn − y∥+ C ∥xn − x∥ · ∥y∥
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−−−−−→
n→+∞ 0.

Ceci fournit la continuité de φ.

Le résultat général se démontre de façcon analogue ;

Soit
(
x
(n)
1 , · · · , x(n)p

)
∈

(
p∏
k=1

Ek

)N

qui tend vers (x1, · · · , xp). Soit n un entier naturel. Pour conformité de

notation, on notera x(n) =
(
x
(n)
1 , · · · , x(n)p

)
et x = (x1, · · · , xp). Alors∥∥∥φ(x(n))−φ (x)

∥∥∥ =
∥∥∥φ(x(n))−φ(x(n)1 , · · · , x(n)p−1, xp

)
+φ

(
x
(n)
1 , · · · , x(n)p−1, xp

)
−φ (x)

∥∥∥
=
∥∥∥φ(x(n)1 , · · · , x(n)p−1, x

(n)
p − xp

)
+φ

(
x
(n)
1 , · · · , x(n)p−1, xp

)
−φ (x)

∥∥∥
≤
∥∥∥φ(x(n)1 , · · · , x(n)p−1, x

(n)
p − xp

)∥∥∥+ ∥∥∥φ(x(n)1 − x1, · · · , x(n)p−1 − xp, xp

)∥∥∥ .
Maintenant, par hypothèse, il existe C ≥ 0 tel que

∥∥∥φ(x(n)1 , · · · , x(n)p−1, x
(n)
p − xp

)∥∥∥ ≤ C
∥∥∥x(n)p − xp

∥∥∥ p−1∏
k=1

∥∥∥x(n)k

∥∥∥ −−−−−→
n→+∞ 0.

Idem, ∥∥∥φ(x(n)1 − x1, · · · , x(n)p−1 − xp, xp

)∥∥∥ ≤ C ∥xp∥
p−1∏
k=1

∥∥∥x(n)k − xk

∥∥∥ −−−−−→
n→+∞ 0.

Ceci achève la démonstration. ■

Théorème 49 : Continuité des Applications Multilinéaires end Dimension Finie :

Soit φ une application bilinéaire sur un produit d’espaces tous de dimensions finies.

Alors φ est continue.

Démonstration. Gardons les mêmes notation que la démonstration précédante. Pour tout k ∈ J1, pK, fixons nk =

dim Ek et Bk =
(
e
(k)
1 , · · · , e(k)nk

)
une base de Ek. Soit x = (x1, · · · , xp) ∈ E1 × · · · × Ep puis ∀k ∈ J1, pK, xk =

nk∑
i=1

x
(k)
i e

(k)
i . Alors,

∥φ (x1, · · · , xp)∥ =

∥∥∥∥∥∥φ
 n1∑
i1=1

x
(1)
i1
e
(1)
i1
, · · · ,

np∑
ip=1

x
(p)
ip
e
(p)
ip

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n1∑
i1=1

· · ·
np∑
ip=1

x
(1)
i1

· · · x(p)ip φ
(
e
(1)
i1
, · · · , e(p)ip

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

(i1,··· ,ip)∈
∏

n
k=1J1,nkK

x
(1)
i1

· · · x(p)ip φ
(
e
(1)
i1
, · · · , e(p)ip

)∥∥∥∥∥∥
≤

∑
(i1,··· ,ip)∈

∏
n
k=1J1,nkK

∣∣∣x(1)i1 ∣∣∣ · · · ∣∣∣x(p)ip ∣∣∣ ∥∥∥φ(e(1)i1 , · · · , e(p)ip )∥∥∥
≤

∑
(i1,··· ,ip)∈

∏
n
k=1J1,nkK

∥x1∥∞ · · · ∥xp∥∞
∥∥∥φ(e(1)i1 , · · · , e(p)ip )∥∥∥

=

 ∑
(i1,··· ,ip)∈

∏
n
k=1J1,nkK

∥∥∥φ(e(1)i1 , · · · , e(p)ip )∥∥∥


︸ ︷︷ ︸
C

∥x1∥∞ · · · ∥xp∥∞ .

La caractèrisation est établie. ■
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Théorème 50 : Continuité des Fonctions Polynomiales :

Toute fonction polynomiale est continue.

Démonstration. Soit B = (e1, · · · , en) une base de E et f : x =
n∑
i=1

xiei 7−→ ∑
(k1,··· ,kn)∈Nn

λk1,··· ,kn

n∏
i=1

xki

i polyno-

miale. Il y’en a plusieurs approches.

En utilisant les théorèmes généraux : pour tout (k1, · · · , kn) ∈ Nn, l’application

φk1,··· ,kn
: x =

n∑
i=1

xiei 7−→ xk1

1 · · · xkn
n

est continue ; l’application x =
n∑
i=1

xiei 7−→ xi est continue car linéaire (projection sur la droite vectorielle Kei) sur un

espace de dimension finie. Ainsi, x =

n∑
i=1

xiei 7−→ xki

i est le produit (usuel) de ki forme linéaires continues donc est

continue. Ce même dernier argument s’applique pour établir la continuité de φk1,··· ,kn
. Ainsi, f est une combinaison

linéaire finie des φk1,··· ,kn
(car les λk1,··· ,kn

s’annulent le moment où chaque ki dépasse un certain rang) donc est
continue.

En utilisant la caractèrisation séquentielle : claire. ■

Théorème 51 : Compacité et Valeurs d’Adhérence :

Soit K un compact et (un)n∈N∈KN .

(un)n∈N converge si et seuelement si elle admet une unique valeur d’adhérence.

Démonstration. On sait déjà que si une suite converge, alors elle admet une unique valeur d’adhérence. Etablissons
la réciproque.

Supposons que (un)n∈N admet une unique valeur d’adhérence ℓ. Supposons par absurde que ℓ n’en est pas limite.
Ainsi,

∃ε0 > 0/∀N ∈ N, ∃n ≥ N/ ∥un − ℓ∥ ≥ ε0.

En particulier, ∃n ≥ 0/ ∥un − ℓ∥ ≥ ε0. Notons n = φ(0). Mais alors ∃n ′ ≥ φ(0) + 1/ ∥un ′ − ℓ∥ ≥ ε0. Notons
n ′ = φ(1). On aura φ(1) > φ(0). Par récurrence, on poura alors exhiber une extractrice φ strictement croissante telle
que ∀n ∈ N,

∥∥uφ(n) − ℓ
∥∥ ≥ ε0. Maintenant,

(
uφ(n)

)
n∈N est à valeurs dans le compact K, donc admet une sous-suite(

u(φ◦ψ)(n)

)
n∈N qui converge vers une valeur d’adhérence de (un)n∈N. Mais par hypothèse, il n’existe qu’une seule,

à savoir ℓ. Donc uφ(ψ(n)) −−−−−→
n→+∞ ℓ bien que ∀n ∈ N,

∥∥uφ(ψ(n)) − ℓ
∥∥ ≥ ε0. Ceci est absurde. On en déduit que

un −−−−−→
n→+∞ ℓ. ■

Théorème 52 : Compacité, Fermeture et Bornitude :

Tout compact est fermé et borné.

Démonstration. Soit K ⊂ E un compact. Soit (un)n∈N ∈ KN convergente vers ℓ. Alors (un)n∈N admet une sous-
suite convergente vers ℓ ′ ∈ K. Par unicité de la valeur d’adhérence d’une suite convergente, ℓ = ℓ ′ ∈ K. Ceci montre
que K est fermé.

Supposons qu’il n’est pas borné. Alors ∀M ≥ 0, ∃x ∈ K/ ∥x∥ > M. En particulier, ∀n ≥ 0, ∃xn ∈ K/ ∥xn∥ > n.
La suite (xn)n∈N, étant à valeurs dans K, admet une sous-suite

(
xφ(n)

)
n∈N convergente et en particulier bornée. Or,

∀n ≥ 0,
∥∥xφ(n)

∥∥ > φ(n) ≥ n. Donc
∥∥xφ(n)

∥∥ −−−−−→
n→+∞ +∞ contredisant son caractère borné. On a montré que K est

borné. ■

Théorème 53 : Compact au sens de Borel-Lesbegues et au sens de Bolzano-Weierstrass :

Tout BL-compact est BW-compact.
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Démonstration. Soit K un BL-compact ie. pour toute famille d’ouverts (Ui)i∈I (I quelconque) telle que K ⊂
⋃
i∈I

Ui,

il existe une sous-famille finie J ⊂ I telle que K ⊂
⋃
i∈J

Ui.

Soit (xn)n∈N ∈ KN. Supposons que telle suite n’a pas de valeurs d’adhérence dans K. Ainsi,

∀x ∈ K,∃εx > 0/ card ({n ∈ N, ∥xn − x∥ < εx}) < +∞.
Ainsi, K ⊂

⋃
x∈K

B (x, εx). Par hypothèse, il existe donc un nombre fini d’éléments x1, · · · , xp ∈ K tels que

K ⊂
⋃

1≤i≤p

B (xi, εxi) .

Maintenant, le nombre d’indices n tels que xn ∈ K est infini, car la suite est dans K. Ceci implique qu’il existe
i0 ∈ J1, pK de sorte qu’il existe une infinité d’indices n tels que xn ∈ B

(
xi0 , εxi0

)
; dans le cas contraire, il n’existera

qu’un nombre fini d’indices tels que xn ∈ B (xi, εxi) pour toutes les boules et par la suite, on n’aura qu’un nombre fini
d’indices tels que xn ∈ K. Ceci est absurde. On en déduit que K est comapact. ■

Théorème 54 : Sous-Parties Compactes :

Toute partie fermée d’un compact est compacte.

Démonstration. Soit K un compact et A une partie fermée de K. Si K ou A est vide, c’est fini. On suppose le
contraire. Soit (xn)n∈N ∈ AN. En particulier, (xn)n∈N ∈ KN et par compacité de K, il existe une extractrice φ et
un vecteur ℓ tels que xφ(n) −−−−−→

n→+∞ ℓ et ℓ ∈ K. Maintenant,
(
xφ(n)

)
n∈N ∈ AN et est convergente vers ℓ et, par

fermeture de A, ℓ ∈ A. Ainsi, la suite (xn)n∈N admet au moins un valeur d’adhérence dans A. Ceci montre que A est
compact. ■

Théorème 55 : Compact Produit :

Soient p ∈ N∗, E1, · · · , Ep p espaces vectoriels normés et A1, · · · , Ap des sous-parties compactes respectives. Alors
p∏
i=1

Ai est un compact de
p∏
i=1

Ei muni de sa norme produit.

Démonstration. Si l’un des Ai est vide, le produit est vide et c’est fini. Démontrons le résultat pour le cas contraire
par une récurrence simple sur p.

Si p = 1, rien à faire. Pour alléger “l’idée de la récurrence”, traitons le cas p = 2. Soit (xn)n∈N une suite à

valeurs dans A1 × A2. Ainsi, son terme général s’écrira xn =
(
x(1)n , x(2)n

)
, où ∀n ∈ N, x(1)n ∈ A1 et x(2)n ∈ A2.

Par compacité de A1, il existe une extractrice φ1 et un vecteur x(1) ∈ A1 tels que x(1)
φ1(n)

−−−−−→
n→+∞ x(1). Maintenant,(

x
(2)
φ1(n)

)
n∈N

∈ AN
2 . Puisque A2 est compact, alors il existe une extractrice φ2 et un vecteur x(2) ∈ A2 tels que

x
(2)
(φ1◦φ2)(n)

−−−−−→
n→+∞ x(2). Finalement, la suite du terme général x(φ1◦φ2)(n) =

(
x
(1)
(φ1◦φ2)(n)

, x
(2)
(φ1◦φ2)(n)

)
est extraite

de (xn)n∈N et tend vers
(
x(1), x(2)

)
∈ A1 ×A2. Ceci montre que A1 ×A2 est un compact.

Soit p ≥ 2. Supposons que p− 1 produit de compact est un compact de l’espace produit.

Soit (xn)n∈N =
((
x(1)n , · · · , x(p)n

))
n∈N

∈

(
p∏
i=1

Ai

)N

. En particulier,
((
x(1)n , · · · , x(p−1)n

))
n∈N

∈

(
p−1∏
i=1

Ai

)N

. Ainsi,

il existe une extractrice φ et un vecteur
(
x(1), · · · , x(p−1)

)
∈ A1 × · · · × Ap−1 tels que

(
x
(1)
φ(n), · · · , x

(p−1)
φ(n)

)
−−−−−→
n→+∞(

x(1), · · · , x(p−1)
)

par hypothèse de récurrence. Maintenant,
(
x
(p)
φ(n)

)
n∈N

∈ AN
p et par la suite, il existe une extractrice

ψ et un vecteur x(p) ∈ Ap tels que x(p)(φ◦ψ)(n) −−−−−→n→+∞ x(p). Dans tel cas, x(φ◦ψ)(n) =
(
x
(1)
(φ◦ψ)(n), · · · , x

(p)
(φ◦ψ)(n)

)
−−−−−→
n→+∞(

x(1), · · · , x(p)
)
∈

p∏
i=1

Ai (convergence des suites en norme produit). Le résultat est établi par récurrence. ■
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Théorème 56 : Continuité et Compacité :

L’image continue d’un compact est un compact.

Démonstration. Soient f : E −→ F continue et K un compact de E. Si K est vide, f(K) = ∅ est comapct. Supposons
le contraire. Soit (yn)n∈N ∈ (f(K))N. Alors

∀n ∈ N, ∃xn ∈ K/ f (xn) = yn.

Maintenant, il existe une extractrice φ et un vecteur ℓ ∈ K tels que xn −−−−−→
n→+∞ ℓ. Ainsi, yφ(n) = f

(
xφ(n)

)
−−−−−→
n→+∞ f(ℓ)

par continuité de f. De plus, f(ℓ) ∈ f(K), ce qui conclut la démonstration. ■

Théorème 57 : Condition Suffisante de la Continuité de la Réciproque d’une Fonction Bijective
Continue :

Soit f : K −→ L continue et bijective.

Si K est compact, alors f−1 est continue. Dit autrement, f est un homéomorphisme.

Démonstration. Supposons que K est compact. Montrons que f−1 est continue en établissant la caractèrisation
séquentielle ; soit y ∈ L et (yn)n∈N ∈ LN qui tend vers y. Montrons que f−1 (yn) −−−−−→

n→+∞ f−1(y).

Montrons d’abord que la suite du terme général f−1 (yn) converge. Puisqu’elle est à valeurs dans K qui est
compact, il suffit de montrer qu’elle admet une unique valeur d’adhérence. Soit alors φ un extractrice de sorte que(
f−1

(
yφ(n)

))
n∈N converge, disons vers ℓ ∈ K. Pour tout n ∈ N, soit xn ∈ K l’unique vecteur de K tel que f (xn) = yn.

Ainsi, f
(
xφ(n)

)
= yφ(n) −−−−−→

n→+∞ y. Mais d’autre part,

yφ(n) = f
(
f−1

(
yφ(n)

))
−−−−−→
n→+∞ f(ℓ)

par continuité de f. Par unicité de limite, y = f(ℓ) ou encore, ℓ = f−1(y). Ainsi,
(
f−1 (yn)

)
n∈N admet une unique

valeur d’adhérence, à savoir f−1(y). Puisque la suite est à valeurs dans un compact, alors f−1 (yn) −−−−−→
n→+∞ f−1(y).

Ceci montre la continuité. ■

Théorème 58 : Image d’un Compact par Fonction à Valeurs dans R :

Soient A un compact non vide et f : A −→ R continue.

Alors f est bornée et atteint ses bornes ie. il existe x1, x2 ∈ A tels que f (x1) = min
x∈A

f(x) et f (x2) = max
x∈A

f(x).

Démonstration. f(A) est borné car compact tant qu’image continue d’un compact. Puisqu’il est de plus une partie
non vide de R, alors il admet des bornes supérieure et inférieure. Notons-les respectivement M et m.

M est limite d’une suite d’éléments de f(A) en vertu de la caractèrisation séquentielle de la borne supérieure. Mais
f(A) est fermé car compact, donc M ∈ f(A). Ceci prouve que M est atteint. Idem pour la borne inférieure. ■

Théorème 59 : Théorème de Heine :

Soit f continue sur un compact. Alors elle est uniformément continue.

Démonstration. Soit f : K −→ F continue, où K est compact. Par absurde, supposons que f n’est pas uniformément
continue. Alors

∃ε > 0/∀η > 0, ∃(x, y) ∈ K2/ ∥x− y∥ < η et ∥f(x) − f(y)∥ ≥ ε.

ε est maintenant fixe. Il existe ainsi deux suites à valeurs dans K de termes généraux respectifs xn et yn de sorte que

∀n ∈ N, ∥xn − yn∥ <
1

n+ 1
et ∥f (xn) − f (yn)∥ ≥ ε.

Déjà, xn − yn −−−−−→
n→+∞ 0. De plus, on peut extraire une sous-suite

(
xφ(n)

)
n∈N qui converge vers une limite que l’on

notera ℓ ∈ K. Maintenant, yφ(n) = xφ(n) −
(
xφ(n) − yφ(n)

)
−−−−−→
n→+∞ ℓ− 0 = ℓ. Maintenant,

∀n ∈ N,
∥∥f (xφ(n)

)
− f
(
yφ(n)

)∥∥ ≥ ε
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et par passage à la limite (et continuité de f), on obtient

∥f(ℓ) − f(ℓ)∥ = 0 ≥ ε.

Ceci est absurde. On en déduit que f est uniformément continue. ■

Dorénavant, E est un espace vectoriel de dimension finie dont on fixe une base B = (e1, · · · , ep).

Théorème 60 : Théorème de Bolzano-Weierstrass en Norme Infinie :

Dans un espace vectoriel de dimension finie, toute suite bornée admet une sous-suite convergente pour la norme infinie
(à priori, on ne sait pas si les normes sont équivalentes en dimension finie).

Démonstration. On fera la démonstration par récurrence sur p la dimension de l’espace.

Initialisation : si p = 1. Soit (un)n∈N une suite bornée à valeurs dans E = Vect (e1). Ainsi,

∀n ∈ N,∃xn ∈ K/ un = xne1

et d’autre part, il existe M ≥ 0 tel que ∀n ∈ N, ∥un∥ ≤M. Maintenant,

∀n ∈ N, ∥xne1∥ = |xn| ∥e1∥ ≤M.

Donc |xn| ≤
M

∥e1∥
(∥e1∥ > 0 car e1 ̸= 0 tant que la famille (e1) est libre). Ainsi, (xn)n∈N est une suite numérique

bornée, donc admet une sous-suite
(
xφ(n)

)
n∈N convergente, d’après le théorème de Bolzano-Weierstrass établi

dans le cas où E = K. Ainsi,
(
uφ(n)

)
n∈N converge et l’initialisation est établie.

Hérédité : soit p ≥ 2. Supposons que toute suite bornée dans un espace de dimension p− 1 admet une sous-suite
convergente pour la norme infinie. Soit (un)n∈N une suite bornée à valeurs dans E = Vect (e1, · · · , ep), disons par
M ≥ 0. Notons

∀n ∈ N, un =

p∑
i=1

x(i)n ei.

Notons aussi (vn)n∈N la suite du terme général vn =

p−1∑
i=1

x(i)n ei de sorte que ∀n ∈ N, un = vn + x(p)n ep.

Maintenant,
∀n ∈ N,

∣∣∣x(p)n ∣∣∣ ≤ ∥un∥∞ ≤M.

Donc il existe une extractrice φ et ℓp ∈ K tels que x(p)
φ(n) −−−−−→n→+∞ ℓp+1 puis x(p)

φ(n)ep −−−−−→
n→+∞ ℓpep.

Maintenant, la suite
(
vφ(n)

)
n∈N est à valeurs dans l’espace Vect (e1, · · · , ep−1) qui est de dimension p − 1 et

est bornée tant que différence de deux suites bornées. Par hypothèse de récurrence, il existe une extractrice ψ et
ℓ ∈ Vect (e1, · · · , ep−1) tels que v(φ◦ψ)(n) −−−−−→

n→+∞ ℓ. Finalement,

u(φ◦ψ)(n) = v(φ◦ψ)(n) + x
(p)
(φ◦ψ)(n)ep −−−−−→

n→+∞ ℓ+ ℓpep.

Le résultat est établi par récurrence. ■

Théorème 61 : Théorème de Borel-Lesbegues en Norme Infinie :

En dimension finie, les compacts sont les parties fermées et bornées pour la norme infinie.

Démonstration. Un sens est déjà établi. Montrons qu’en dimension finie, si K est fermé borné (par la norme infinie),
alors K est compact. Supposons les hypothèses énoncées. Soit (xn)n∈N ∈ KN. Alors (xn)n∈N est bornée et d’après
le théorème précédant, (xn)n∈N admet une valeur d’adhérence. Par fermeture de K, cette valeur d’adhérence en est
élément. On a montré que K est un compact. ■

Théorème 62 : Equivalence de Normes en Dimension Finie :

En dimension finie, toutes les normes sont équivalentes.
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Démonstration. Soit ∥ ·∥ une norme sur E. On va montrer qu’elle est équivalente à la norme infinie, ce qui assurera
la véracité du théorème par transitivité.

La sphère unité S de E pour la norme infinie est fermé et bornée. Ainsi, elle est compacte d’après le théorème de
Borel-Lesbegues. Maintenant, montrons que l’application f : (E, ∥ · ∥∞) −→ (R, | · |)

x 7−→ ∥x∥
est continue. Mais,

∀x =
p∑
i=1

xiei ∈ E, ∥x∥ =

∥∥∥∥∥
p∑
i=1

xiei

∥∥∥∥∥
≤

p∑
i=1

|xi| ∥ei∥

≤
p∑
i=1

∥x∥∞ ∥ei∥

= ∥x∥∞
(
p∑
i=1

∥ei∥

)
.

Si on note k =

p∑
i=1

∥ei∥, alors ∀x ∈ E, ∥x∥ ≤ k∥x∥∞. Ainsi,

∀(x, y) ∈ E2, |∥x∥− ∥y∥| ≤ ∥x− y∥ ≤ k∥x− y∥∞.
Donc f est lipschitzienne et en particulier continue. Ainsi, f(S) est un compact de R. D’après le Théorème 58, f(S)
admet un minimum et un maximum atteints que l’on notera respectivement α et β.

Maintenant, α ̸= 0 et β ̸= 0 ; il existe x1, x2 ∈ S tels que f (x1) = α et f (x2) = β. Ainsi, ∥x1∥ = α ∥x2∥ = β.
Puisque |x1∥∞ = |x2∥∞ = 1, alors x1 ̸= 0 et x2 ̸= 0, fournissant α ̸= 0 et β ̸= 0.

Finalement, soit x ∈ E \ {0}. Alors
1

∥x∥∞ x ∈ S. Donc

α ≤ f
(

1

∥x∥∞ x
)

≤ β

ou encore
α ≤

∥∥∥∥ 1

∥x∥∞ x
∥∥∥∥ ≤ β

soit
α∥x∥∞ ≤ ∥x∥ ≤ β∥x∥∞.

Cette inégalité reste vrai même pour x = 0. Le résultat est établi. ■

Théorème 63 : Théorème de Bolzano-Weierstrass :

Dans un espace vectoriel de dimension finie, toute suite bornée admet une sous-suite convergente (peu importe la
norme utilisée).

Démonstration. D’après les Théorèmes 60 et 62. ■

Théorème 64 : Théorème de Borel-Lesbegues en Norme Infinie :

En dimension finie, les compacts sont les parties fermées et bornées.

Démonstration. D’après les Théorèmes 61 et 62. ■

Théorème 65 : Suites de Cauchy : Propriétés :

• Une suite convergente est de Cauchy.

• Une suite de Cauchy est bornée.

• Une suite de Cauchy ayant une valeur d’adhérence converge.
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Démonstration. • Soit (un)n∈N ∈ EN convergente, disons vers ℓ ∈ E. Soit ε > 0. Alors

∃N ∈ N/∀n ≥ N, ∥un − ℓ∥ < ε

2
.

Soient n,m ≥ N. Alors
∥un − um∥ ≤ ∥un − ℓ∥+ ∥um − ℓ∥ < ε

2
+
ε

2
= ε.

D’où le résultat.

• Soit (un)n∈N ∈ EN de Cauchy. Ainsi,

∃N ∈ N/∀n,m ≥ N, ∥un − um∥ < 1.

Alors,
∀n ≥ N, ∥un∥ ≤ ∥un − uN∥+ ∥uN∥ < 1+ ∥uN∥ .

Le majorant M = max (1+ ∥uN∥ , ∥u0∥ , · · · , ∥uN−1∥) convient.

• Soit (un)n∈N ∈ EN de Cauchy et a en est une valeur d’adhérence. Soit ε > 0. Alors

∃N ∈ N/∀n,m ≥ N, ∥un − um∥ < ε

2
.

Soit φ une extractrice telle que uφ(n) −−−−−→
n→+∞ a. Alors

∃N ′ ∈ N/∀n ≥ N ′,
∥∥uφ(n) − a

∥∥ < ε

2
.

Soit n ≥ max (N,N ′). Alors n ≥ N et φ(n) ≥ N (car φ(n) ≥ n) puis

∥un − a∥ ≤
∥∥un − uφ(n)

∥∥+ ∥∥uφ(n) − a
∥∥

<
ε

2
+
ε

2

= ε.

Ceci montre que (un)n∈N converge et vers a. ■

Théorème 66 : Espaces de Banach de Référence :

• R est de Banach.

• Rn est de Banach.

• Tout espace de dimension finie est de Banach.

• Soit X un ensemble non vide et B(X, E) l’ensemble des fonctions bornées à valeurs de X dans E. On le munit de la
norme ∥ · ∥∞ dont on rappelle la définition :

∀f ∈ B(X, E), ∥f∥∞ = sup
x∈X

∥f(x)∥.

Si (E, ∥ · ∥) est de Banach, alors (B(X, E), ∥ · ∥∞) est de Banach.

Démonstration. Le premier résultat est connu depuis le S1. En général, si E est de dimension finie et on considère
une suite de Cauchy dans E, alors celle-ci est bornée. Par théorème de Bolzano-Weierstrass, elle admet une
valeur d’adhérence. Finalement, elle sera une suite de Cauchy admettant une valeur d’adhérence, ce qui fournit la
convergence. Ceci montre que E est de Banach.

Démontrons le quatrième point. Supposons que E est de Banach (sans mention de norme car il n’y a pas
d’ambiguïté). Soit (fn)n∈N ∈ (B(X, E))N de Cauchy. Ainsi,

∀ε > 0,∃N ∈ N/∀n,m ≥ N, ∥fn − fm∥∞ < ε.

Ainsi,
∀ε > 0, ∃N ∈ N/∀n,m ≥ N, ∀x ∈ X, ∥fn(x) − fm(x)∥ < ε (∗).
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En particulier,
∀x ∈ X, ∀ε > 0,∃N ∈ N/∀n,m ≥ N, ∥fn(x) − fm(x)∥ < ε.

Ceci montre que pour tout x ∈ X, la suite (fn(x))n∈N (qui est à valeurs dans un espace de Banach) est de Cauchy.
Ainsi, ∀x ∈ X, (fn(x))n∈N converge. Notons pour tout x ∈ X, f(x) = lim

n→+∞ fn(x) (ou encore f la limite simple de

la suite de fonctions du terme général fn).

Maintenant dans (∗), un passage à la limite pour m est permis ;

∀ε > 0,∃N ∈ N/∀n ≥ N, ∀x ∈ X, ∥fn(x) − f(x)∥ < ε.

Soit
∀ε > 0, ∃N ∈ N/∀n ≥ N, ∥fn − f∥∞ < ε.

Ceci montre que fn
∥·∥∞

−−−−−→
n→+∞ f. Le résultat est établi.

■

Théorème 67 : Théorème du Point Fixe :

Soit E un espace de Banach et f : E −→ E contractante ie.

∃k ∈ [0, 1[/∀(x, y) ∈ E2, ∥f(x) − f(y)∥ ≤ k∥x− y∥.

Alors f admet un unique point fixe. De plus, celui-ci est la limite commune de toutes les suites de la forme{
u0 ∈ E,
∀n ∈ N, un+1 = f (un)

.

Démonstration. Commençons par l’unicité, c’est-à-dire on montre que si f admet un point fixe, alors il est unique.
Soient ω,ω ′ deux vecteurs tels que f(ω) = ω et f (ω ′) = ω ′. Alors

∥f(ω) − f (ω ′)∥ = ∥ω−ω ′∥ ≤ k ∥ω−ω ′∥ .

Ainsi, (1− k) ∥ω−ω ′∥ ≤ 0. Mais 1− k > 0, donc ∥ω−ω ′∥ ≤ 0 puis ∥ω−ω ′∥ = 0. Finalement, ω = ω ′.

Maintenant, l’existence. On considère la suite (un)n∈N définie comme dans l’énoncé du Théorème. Le but est de
montrer que celle-ci est convergente en montrant qu’elle est de Cauchy.

On a :

∀n ∈ N, ∥un+2 − un+1∥ = ∥f (un+1) − f (un)∥
≤ k ∥un+1 − un∥ .

L’ « idée » est donc de répéter ce procès :

« ∥un+2 − un+1∥ ≤ k ∥un+1 − un∥
≤ k · k ∥un − un−1∥
≤ k3 ∥un−1 − un−2∥
≤ · · · ».

Une récurrence simple fournit alors ∀n ∈ N∗, ∥un − un−1∥ ≤ kn−1 ∥u1 − u0∥. Deux termes successifs de (un)n∈N
sont donc « assez proches ». L’idée est d’établir que n’importe deux termes de la suite sont aussi « assez proches ».
Encore une autre fois, l’« idée » est

« ∥un+2 − un∥ ≤ ∥un+2 − un+1∥+ ∥un+1 − un∥
≤
(
kn+1 + kn

)
∥u1 − u0∥ »

puis

« ∥un+3 − un∥ ≤ ∥un+3 − un+2∥+ ∥un+2 − un∥
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≤
(
kn+2 + kn+1 + kn

)
∥u1 − u0∥ »

Ainsi, on peut montrer par récurrence sur α = m− n que

∀m > n ∈ N, ∥um − un∥ ≤ kn
m−n−1∑

p=0

kp

 ∥u1 − u0∥ ≤ kn

1− k
∥u1 − u0∥ .

Soit ε > 0. Puisque
kn

1− k
∥u1 − u0∥ −−−−−→

n→+∞ 0, alors

∃N ∈ N/∀m > n ≥ N, ∥um − un∥ < ε.

Ceci montre que (un)n∈N est de Cauchy donc est convergente puisque E est un espace de Banach. Notons ℓ sa
limite. f est continue car lipschitzienne et alors,

ℓ = lim
n→+∞un+1 = lim

n→+∞ f (un) = f
(

lim
n→+∞un

)
= f (ℓ) .

Ceci montre l’existence d’un point fixe de f. ■

Théorème 68 : Connexité par Arcs dans R :

Les connexes par arcs dans R sont les intervalles.

Démonstration. =⇒) Un intervalle est convexe donc connexe par arcs.

⇐=) Soit A ⊂ R un connexe par arcs non vide. On ne discutera pas le cas trivial où A est vide.

Soient x ≤ y ∈ A. Montrons que [x, y] ⊂ A. Si x = y, c’est immédiat. Dorénavant, x ̸= y. Soit t ∈ [x, y]. Il existe
une fonction γ : [0, 1] −→ A continue telle que γ(0) = x et γ(1) = y.

• •
0 1

•

•

x

y •

•t

γ

Le théorème des valeurs intermédiares affirme alors l’existence de η ∈ [0, 1] tel que γ(η) = t. Or, γ([0, 1]) ⊂ A. Ainsi,
t ∈ A. Le théorème est établi. ■

Théorème 69 : Le Théorème des Valeurs Intermédiares (généralisé) :

L’image continue d’un connexe par arcs est un connexe par arcs.

En particulier, si F = R, l’image d’un continue d’un connexe par arcs est un intervalle.

Démonstration. Soient f : E −→ F continue et A ⊂ E connexe par arcs. Soient (z, t) ∈ (f(A))2. Notons alors
x, y ∈ A tels que f(x) = z et f(y) = t. Par connexité de A, il existe un chemin continue γ joignant x et y. Posons
ξ = f ◦ γ : [0, 1] −→ f(A). On a ξ(0) = f(γ(0)) = f(x) = z et ξ(1) = f(γ(1)) = f(y) = t. De plus, γ([0, 1]) ⊂ A donc
ξ([0, 1]) = f (γ([0, 1])) ⊂ f(A). Finalement, ξ est continue tant que composée de fonctions continues. Ainsi, ξ est un
chemin continue joignant z et t, fournissant que f(A) est connexe par arcs. ■

Théorème 70 : Fonctions Localement Constantes et Connexité :

Toute fonction localement constante sur un connexe par arcs est constante.
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Démonstration. Soient A ⊂ E un connexe par arcs et f : A −→ F. Supposons que f est localement constante ie.

∀x ∈ A,∃r > 0/∃Cx ∈ F/ f|B(x,r) = Cx.

Soit x0 ∈ A. On veut montrer que ∀x ∈ A, f(x) = f(x0). Posons alors

φ : A −→ R

x 7−→ {1, si f(x) = f (x0) ,
0, sinon.

On montre que φ est continue. Soit x ∈ A et (xn)n∈N ∈ AN telle que xn −−−−−→
n→+∞ x. f est localement constante, donc

il existe ε > 0 et une constante Cx ∈ F telle que ∀t ∈ B(x, ε), f(t) = Cx. D’autre part, à partir d’un certain rang,
xn ∈ B(x, ε) soit f (xn) = f(x) ou encore φ (xn) = φ(x) à partir d’un certain rang. Ceci fournit φ (xn) −−−−−→

n→+∞ φ(x)

puis la continuité de φ.

Maintenant, φ est continue sur A connexe par arcs. Ainsi, φ(A) est un intervalle. Or, φ(A) ⊂ {0, 1}. Donc
φ(A) ∈ {∅, {0}, {1}}. Or, φ (x0) = 1, donc φ(A) = {1}. Ceci fournit que ∀x ∈ A, f(x) = f (x0). ■

Théorème 71 : Parties Ouvertes et Fermées d’un Connexe par Arcs :

La seule partie non vide d’un connexe par arcs A qui est à la fois ouverte et fermée (sous la topologie induite par A)
est A.

Démonstration. Soit P ⊂ A non vide une partie à la fois ouverte et fermée relativement à A. Notons f = 1P :
A −→ R. Montrons que f est continue, en montrant que l’image réciproque de tout ouvert de R est un ouvert relatif
de A. Soit O un ouvert de R.

• Si 0 /∈ O et 1 /∈ O, alors f−1(O) = ∅ (qui est un ouvert relatif de A).

• Si 0 /∈ O et 1 ∈ O, alors f−1(O) = P (qui est ouvert relatif de A).

• Si 0 ∈ O et 1 /∈ O, alors f−1(O) = A \ P (qui est ouvert relatif de A par fermeture relative de A).

• Si 0 ∈ O et 1 ∈ O, alors f−1(O) = A (qui est ouvert relatif de A).

Ainsi, f est continue. Donc f (A) est un intervalle. Or, φ(A) ⊂ {0, 1}. Ainsi, φ(A) = {0} ou φ(A) = {1}. Mais P est
non vide, donc ∃x0 ∈ A/ f (x0) = 1. Donc f = 1. Ceci fournit 1P = 1A puis P = A. ■

Théorème 72 : Composantes Connexes par Arcs :

Soit A ⊂ E non vide.

La relation ∼A définie sur A2 par

∀(x, y) ∈ A2, x ∼A y⇐⇒ ∃γ ∈ C([0, 1], A)/

{
γ(0) = x,

γ(1) = y

est une relation d’équivalence. Les classes d’équivalences pour ∼A sont connexes par arcs dites composantes connexes
par arcs de A.

Démonstration. Soient x, y, z ∈ A. La fonction γ constante en x sur [0, 1] est un chemin continue joignant x et
lui-même. Donc x ∼A x.

Maintenant, supposons que x ∼A y. Soit γ un chemin continue joignant x et y. Le chemin « inverse » t 7−→ γ(1−t)
joigne y et x et est continue à valeurs dans A. Ainsi, y ∼A x.
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•

•

x

y
γ(t)→← γ(1− t)

Supposons maintenant que x ∼A y et y ∼A z. Soient γ et ξ les deux chemins joignant respectivement x et y, puis y
et z. Le chemin τ obtenu par « concatenation » des deux chemins est continue, à valeurs dans A et joigne x et z :

∀t ∈ [0, 1], τ(t) =


γ(2t), si 0 ≤ t ≤ 1

2
,

ξ (2t− 1) si
1

2
≤ t ≤ 1.

•

•

•

x

y

z

γ

ξ

Ainsi, x ∼A z. On a montré que ∼A est une relation d’équivalence.

Maintenant, soient x ∈ A et (a, b) ∈ (cl(x))
2. Alors a ∼A x et x ∼A b. Donc a ∼A b. Ainsi, il exsite un chemin

continu γ joignant a et b à valeurs dans A. Supposons qu’il existe t0 ∈ [0, 1] de sorte que c := γ (t0) /∈ cl(x). Ainsi, c
et a ne sont pas en relation par rapport à ∼A.

D’autre part, c ∼A a ; d’abord, t0 ̸= 0 car dans le cas contraire, c = γ(0) = a. Or, a est dans la classe de x bien
que c ne l’est pas. Puis, on considère le chemin continu γ̃ : t 7−→ γ (t0t). γ̃ est continu sur [0, 1] à valeurs dans A et
vérifie γ̃(0) = γ(0) = a et γ̃(1) = γ (t0) = c. Ainsi, a ∼A c. Puisque a ∼A x, alors c ∼A x, contredisant c /∈ cl(x).

Ainsi, γ([0, 1]) ⊂ cl(x). Le résultat est établi. ■

31



Calcul Différentiel
Dans toute la suite, E et F sont deux R-espaces vectoriels normés de dimensions finies.

Théorème 1 : Différentiabilité :

Soit E et F deux espaces vectoriels de dimensions finies, U un ouvert de E et f : U −→ F. Soit a ∈ U.

Si f est différentiable en a ie. il existe φ ∈ L(E, F) telle que

f(a+ h) =
h→0f(a) +φ(h) + o (∥h∥) ,

alors φ est unique et est appelée la différentielle de f en a, notée df(a).

Démonstration. Supposons l’existence de deux applications linéaires φ et ψ vérifiant l’énoncé. Alors

f(a+ h) =
h→0f(a) +φ(h) + o (∥h∥) =

h→0f(a) +ψ(h) + o (∥h∥) .
Soit (φ−ψ) (h) =

h→0o (∥h∥) ou encore, lim
h→0

1

∥h∥
(φ−ψ) (h) = 0. Soit u ∈ E \ {0}.

Notons h = tu où t est un paramètre réel strictement positif. Alors

1

∥h∥
(φ−ψ) (h) =

1

∥tu∥
(φ−ψ) (tu) =

1

∥u∥
(φ−ψ) (u).

Ainsi, le passage à la limite pour t→ 0+ donne

1

∥u∥
(φ−ψ) (u) = 0.

Ainsi, φ(u) = ψ(u). De plus, cette égalité est vraie même pour u = 0. Ceci montre que φ = ψ. ■

Théorème 2 : Différentiabilité et Continuité :

Si f est différentiable en a, alors elle y est continue.

Démonstration. Supposons la différentiabilité en a. Alors

f(a+ h) =
h→0f(a) + df(a) · h+ o (∥h∥) .

Ainsi, quad h tend vers 0, df(a) ·h tend vers 0 car df(a) est linéaire sur E qui est de dimension finie donc est continue.
Ainsi,

lim
h→0 f(a+ h) = f(a).

Ceci achève la démonstration. ■

Notons :

Différentiabilité en a Continuité en a Continuité des fonctions partielles en a

Toute implication non mentionnée étant fausse.

Théorème 3 : Différentiabilité et Dérivée suivant un Vecteur :

Si f est différentiable en a, alors f est dérivable suivant tout vecteur v en a et :

Dvf(a) = df(a) · v.
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Démonstration. Supposons que f est différentiable en a. Soit v ∈ E. En particulier,

f (a+ tv) =
t→0
t̸=0

f(a) + df(a) · (tv) + o (|t|∥v∥)

ou encore
f (a+ tv) − f(a) =

t→0
t̸=0

tdf(a) · v+ o (t) .

Ceci donne
f (a+ tv) − f(a)

t
=
t→0
t̸=0

df(a) · v+ o (1) .

Ainsi, lim
t→0
t̸=0

f(a+ tv) − f(a)

t
= df(a) · v. En particulier, f est dérivable en a suivant v et Dvf(a) = df(a) · v. ■
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