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TOPOLOGIE DES ESPACES VECTORIELS
NORMES

THEOREME 1 : INEGALITE TRIANGULAIRE :

(E, |I]l) designe un K-espace vectoriel normé. Soient x,y € E. Alors

I = TylIE < lx £ ylF < [1x[[+ [yl -

Démonstration. ||x +y|| < ||x]| + |Jy]] n’est que I'inégalité triangulaire. En substituant y par —y, on trouve,
[ =yl < Il + llyll-

Maintenant,
x| =[x =y +yll < l[x—yll + v,
ainsi, [|x|| — [ly[l < [[x —y||. Par symétrie de roles, [[y[| — [[x|| < [y —x|| = [[x —y|| ce qui fournit
Il =Nyl < [lx =yl .

En substituant y par —y, on trouve encore

[l = Tyl < lIx +yll-

THEOREME 2 : INEGALITE DE CAUCHY-SCHWARZ :

Il: E—K . Alors

x — y/(x, x)
Vix,y) € B2, 1qu)l < Xyl

avec égalité si et seulement si x et y sont liés.

Soit (E, (-, -)) un espace préhilbertien. Notons ||-|| la norme euclidienne associée a ce produit scalaire ie. ’application

Démonstration. La norme euclidienne est bien définie par positivité du produit scalaire. La propriété est évidente
si y = 0. Dorénavant, on suppose le contraire.

Soit t € K puis notons 'application @(t) = ||x — tsz. Alors,

o(t) =[x —ty|?
= (x —ty,x — ty)
= (%, %) — t{x,y) — t{y,x) + tt(y,y)

= IxI* = (t06,y) + T 07 ) + 12 [y
= [[x|I* — 2Re (t(x, y)) + [t y[|®

> 0.

Alors, 5 5

vteK, 2Re(t(x,y)) < [[x[I* +tP [lyll*.
En particulier pour tg = <|x,|y2> , 'inégalité devient :
y
(%)) G| 2 1, )2
ZM<%”§”>§xW+Xﬂ ll? = —Re (106 y)7) < Ix)1* + 2295
lyll [yl lyll Iyl

& 206y < X )l + 16yl
2 2 2
= x5 y)l" < |Ix|I” lyll*-

Le passage a la racine carrée donne l'inégalité désiriée. Maintenant, on obtient ’égalité si et seuelement si @ (to) = 0,
soit ||[x — toyl|| = 0 puis x — toy = 0, ou encore que la famille (x,y) est liée. [ ]



THEOREME 3 : NORME EUCLIDIENNE :

L’application “norme euclidienne” est une norme.

Démonstration. L’application ||-|| est bien définie et est positive par positivité de la fonction racine carrée.

e Homogénéité : soient x € E et A € K. Alors

[AX[] =/ (Ax, Ax) = /A2 (x, x) = [A[\/(x, %) = [A[[|x]] .
e Séparation : soit x € E. Supposons que |[x|| =0. Alors (x,x) = 0 puis x = 0 par définition du produit scalaire.

e Inégalité triangulaire : soient x,y € E.

e+ yll* = (x+y,x +)
= (x,%) + (X, Y) + (4, %) + (4, )
= [jx]|* + 2Re ((x,y)) + [ly|?
< X[ + 216, )l + Ty
< [xII* + 2 %]yl + [y ll®
= ([Ix[l + by [l)?.

Ceci fournit ||x + yl| < ||x]| + |ly]|- On a montré que ||-|| est une norme sur E. ]

THEOREME 4 : QUELQUES NORMES SUR K¢ :

Soient sur K¢ (d € N*) les applications suivantes :

1

d d z
H||1 :(Xl»"')xd)'—>2|xk‘» H'HZI(X],"',Xd)'—) (Z Xk|2> )
k=1 k=1

H”oo : (X1)"' )Xd) — 1rgnéié(d|xk|.

Les applications ||-||;, |||, et |||, sont des normes sur K.

Démonstration. Commengons par ||-||; et ||-||,.
e Les applications ||-||; |||, sont bien définies et sont & valeurs dans R.

* Homogénéité :

d d
Vx = (Xk)1<i<a € KLVAER, Ay = |y, Axa)lly = Z IAxi| = [A| Z Pl = A1
k=1 k=1

et
d 3 a 3
Vx = (i) cpcg EKLVAEK,  [Ax]l, = [[(Ax1, -+, Axa)ll, = (Z Axk|2> = \/IA12 (Z |xk|2> = Xl -
k=T k=1
d
* Séparation : soit x = (Xk)j<yp<q € K. Supposons que [x|; = 0. Alors Z [xk| = 0 puis Vk € [1,d],xx =0
k=T

ou encore x = 0.
Idem, si ||x||,, alors Vk € [1,d], Ixi[* = 0 puis x = 0.

* Inégalité triangulaire : soient x = (Xi);cpcq Y = (Yk)j<peq € K4 Alors :

Ix+ylly = |06k + v crea



d
ZZ Xic + Yl

I\/]Q‘ Il

(il + lyxl)
k=1

= [IxIly +Ilyll4
et

1
2

d
e+l = (Z |xk+yk2>
k=1
1 1
d 2 d 2
< (Z |Xk|2> + (Z yklz> Inégalité de MINKOWSKI
k=1

k=1
= Ixllz + Iyl -

e Maintenant, la partie & = {|xx|, k € [1,d]} est une partie finie de R;. Son maximum alors existe et est un
élément de R4, justifiant que ||-||, est une application bien définie & valeurs dans R .

*+ Homogénéité : une méthode entre autres est la suivante : soient x = (x7,---,xq) € K¢ et A € K. Soit
ko € [1,d] tel que |xy,| =max & = ||x||,. Soit k € [1,d]. Alors [Mxi| = Al x| < [A[ x| = [Al]]x]| - Alors [|Ax|, =
max Wl < A [l - Taversement, NI, € 0 e,k € [T, dJ} done Il = N | < max il = 2],

L’égalité est établie.

* Séparation : soit x = (x1,---,xq) € K¢ tel que ||x|, = 0. Alors Vk € [1,d], 0 < [xi| < |x], =0 ou
encore x = 0.

* Inégalité triangulaire : soient x = (xk);<<q>Y = (Yx)1<p<q € K<. Alors :

vk e [1,d], i+ yil < a4yl < 1xllo + 1yl

puis [[x +ylloo < (X[l + [[Ullo- u
THEOREME 5 : QUELQUES NORMES EN DIMENSION FINIE :
d
Supposons que E est de dimension finie d € N* et soit # = (ej,---,eq) une base de E. Pour tout x = Z xie; € E,
k=T
on définit .
d d 2
_ _ 2
Xl g =D baly  lIxllzm = (Z x| ) oo, = max b
k=1 k=1

Les applications [|x||; g, [[X[l; & et [[X||,, 5 sont des normes sur E.
Démonstration. Analogue & celle du THEOREME 4. |
THEOREME 6 : NORMES DE MATRICES :
Soit p € N*. Les applications

[I-I1 My (K) — Ry

P
A=a)cijep o oA (; |ai’j|>

et

[/l oo : Mp(K)—>R+

P
A=(aii)icijep 1552p 2 Al

sont des normes sur M, (K).




Démonstration. Facile a établir en utilisant les mémes techniques que précédement. |

THEOREME 7 : NORME INFINIE DES FONCTIONS :

de X dans E ie. 'ensemble des applications f : X — E vérifiant 3IM > 0/¥x € X, ||f(x)]| < M. Alors l'application

Il BX,E) — R,

f— sup [[f(x]|
xeX

est une norme sur B(X, E) appelée norme infinie.

Soit (E,||-||) un espace vectoriel normé et X une partie non vide de E. Soit B (X, E) l'espace des applications bornées

Démonstration. Pour f € B(X, E), la partie {||[f(x)]|,x € X} est non vide et majorée dans R, donc admet une borne
supérieure dans R . Ceci montre que la norme infinie est bien définie et vérifie ’axiome de positivité.

e Homogénéité : Soient f € B(X,E) et A € K. Soit x € X. La propriété est immédiate si A = 0. Supposons
dorénavant le contraire. Alors,

(ARG = A ()|
= AL

< [Alsup [[f(x)]|
xeX

Par définition de la borne supérieure, ||Af||_ < IA||/f]|, . Maintenant, soit € > 0. Tant que [A| > 0, alors

£

dxo € X/ ”fHoo - |>\|

< [|If (xo) ||

par caractérisation de la borne supérieure. Ainsi, [A|||f|l, — ¢ < Al[[f(x0)]] = [|(Af) (xo)||. Ainsi, [Al||f]l, =
sup AR (| = [IAf]] .
xXe

e Séparation : soit f € B(X, E). Supposons que ||[f|| ., = 0. Alors Vx € X, 0 < [[f(x)|| <0puisVx € X, f(x)=0.
Ceci donne f = 0.

e Inégalité triangulaire : soient f,g € B(X,E). Alors,
vx e X, [I(f+g)(x)| = [If(x) + g(x)|| < G + g < [[ll oo + 19l -

Ainsi, [If + glloo < Iflloo + 19ls0- .

THEOREME 8 : NORME PRODUIT :

Soient p € N* et (E1,Ny),---,(Ep, Np) p espaces vectoriels normés. L’application

P
@: [[ex — R,
k=1
(x1,- - )Xp) — max (Nq (x1),--- )Np (X‘p))

P
est une norme sur | | Ex.
k=1

Démonstration. Simple et analogue aux précédantes. |

THEOREME 9 : DISTANCE ASSOCIEE A UNE NORME :

distance sur E.

Soit (E, ||||) une espace vectoriel normé. Alors application d définie par ¥(x,y) € E2, d(x,y) = ||[x —y]| est une




Démonstration. d est bien définie sur E X E et est & valeurs dans R, par positivité de la norme. Soit (x,y) € E°.
Ainsi, d(x,y) = 0= |x —y|| =0 & x—y = 0 & x =y en vertu de 'axiome de séparation pour la norme |||
De plus, d(x,y) = ||x —y|| = |ly — x|| = d(y,x). Finalement, pour z € E :

dooy) = x =yl = l(x=2) + (z=y)[| < [[x =zl + [z —y[| = d(x, 2) + d[y, 2).

On a montré que (E,d) est un espace métrique. [ |

THEOREME 10 : DISTANCE D’UNE PARTIE :

Soit A une partie non vide d’un espace métrique (E, d). Alors

V(X)y) € Ez) |d(X, A) - d(U,A)\ S d(XHJ)

Démonstration. Soient (x,y) € E? et a e A. Alors, d(x,A) < d(x,a) < d(x,y) + d(y, a), donc
d(X)A) - d(X)y) S d(y) (1).

Ainsi, d(x,A) —d(x,y) < d(y,A) par définition de la borne inférieure. Ceci donnera d(x,A) —d(y,A) < d(x,y). Par
symétrie des roles, on trouvera d(y,A) — d(x,A) < d(x,y) puis |d(x,A) — d(y,A)| < d(x,y) (on dira que la fonction
“distance a une partie” est 1-lipschitzienne). u

Dans toute la suite, (E,||-||) est un espace vectoriel normé.

THEOREME 11 : UNICITE DE LA LIMITE :
. N
Soit (Un),eny € B

Si (Un), ey converge vers £, alors sa limite est unique. Dorénavant, on peut dire dans tel cas que “{ est la limite de

) P wp : ”
(Un)pen” et écrire € = ngrfoo u,”.

Démonstration. Supposons que (un),, oy converge dans (E, [|-]|) disons vers deux vecteurs £; et {2 non nécessaire-
ment distincts. Soit € > 0. Alors c
aN; GN/VTIZN], ||un—€1||<f

2
et c
N, € N/¥n > Ny, ||un—22|\ <2.
Soit N = max (N7, N3z). Alors vYn > N,
€ €
16 = &2l = [(un = €&2) = (un = &)l < flun = Lfl + flun =i < 5 + 5 =e.
0 —L 1
Ainsi, Ve > 0, |[¢&; —&2]| < e. Maintenant, si & # &, alors |[&; — £2]| > 0 donc [|¢; — & < M puis 1 < 5.
Ceci est absurde. On en déduit que {; = {;. [ |

THEOREME 12 : LINEARITE DE LA LIMITE :

Soient (Un), ey (Vn)nen € EN et A, € K. Supposons que les deux suites convergent respectivement vers £ et ;.
Alors la suite du terme général Au,, + pv,, converge et est de limite Aly + ply.

Démonstration. Soit € > 0. Il existe un rang Ny a partir duquel |[[un — & < 7 et un rang Ny a partir

_t
(IA[+1)

duquel ||vy — £ < . Soit m > max (N1, N3).

&
2(lwl+1)

H()\un + wvn) — (A + H€2)|| = ”}\ (un —41) + (v — eZ)H

< A = &4 + [l v — 2]
€

lul+1)

<
< N5 +luly

€
(AI+1)
€

2

IN

+

£
2
€.

Le théoréme est établi. [ ]

~



THEOREME 13 : LIMITE ET NORME :
Soit (un), oy € EN.

Si (Un) ey tend vers £, alors (|[un]]),, oy tend vers [|€]].

Démonstration. Pour tout entier naturel n, |||un|| — [[€]]| < |lun —£||. Or le membre de droite de 'inégalité tend
vers O par hypothése, ce qui fournit la convergence désiriée. |

THEOREME 14 : CONVERGENCE ET BORNITUDE :

Si une suite converge, alors elle est bornée.

Démonstration. Supposons qu'une suite (Wn),, oy € EN converge vers €. Alors il existe un range N a partir duquel
lun — €| < 1. Ainsi,
V=N, fun] < flun =€+ 16 < T+ (1]

Le réel M = max (|juol|,- -+, |Jlun—1]l, 1+ [|¢]]) est alors un majorant de la suite du terme général ||uy||. [ ]
THEOREME 15 : CONVERGENCE EN NORME PRODUIT :
P N
Soient p € N* et (Eq,N7),---(E,,Np,) p espaces vectoriels normés. Soit (an), oy € <H Ek> de terme général
k=1
P
(ag ) e ,a,[f’]) Finalement, notons ¢ la norme produit sur H Ex.
k=1
P
(an)n ey converge dans H Ex, @ | si et seuelement si Vk € [1,p], (ag‘)) . converge dans (Eyx,Ny). Dans tel
ne
=1
cas, .
lim an, = < lim ag‘)> .
n—-+oo n—+oo 1<k<p
Démonstration. =) Supposons que (an ), oy converge disons vers { = (2(1 ) ,f(p)). Alors
1 1
[0) (an —f) =@ (aﬁl) ff( ))... ’agﬂ 7@(13)) nHJrOO; 0.
Soit n € N et k € [1,p]. Alors Ny (a](ik) — E(k]) <@ (an—¢8 —— 0. Donc (ag‘]) converge dans (Ex, Ny ) et
n—-+4oo neN
vers (%),

<) Réciproquement, on suppose que chaque composante (ag‘)) u de la suite du terme général a, converge
ne

vers £, Soit ¢ > 0. Alors,

vk € [1,p],Ink € N/Vn > ny, Ny (aglk) _ e(k)) ce

Soit Neo = max . Soit 1 > neo. Alors Vk € [1,p], Nk (ag‘) — e“d) < ¢ puis
<k<p

_ ) = (k) _ p(k)
¢ (an — 1) 11;13;<ka (an ( )<£.

Ceci montre que a,; — { sous la norme produit. |
n—+oo



THEOREME 16 : VALEUR D’ADHERENCE :

Soit (Un) ey € EN et a € E.

Les propositions suivantes sont équivalentes :

(1) a est une valeur d’adhérence de (un), c-

(2) 11 existe une extractrice @ telle que EIEOO Up(n) = a.

n

(3) Ve > 0,Vnp e N,In > ny/ |jupn —a| <e.

(4) Ve >0, card({n>0, |un,—a| <e})=+o0.

Démonstration. (1) < (2) est la définition. (3) & (4) est claire. Montrons (2) < (3).

=) Soit ¢ > 0. Supposons qu'il existe une extractrice @ telle que pour tout qu’il existe un rang N a partir duquel
Hu(p(n] — aH < &. Soit ng € N. Posons n = max (¢(N),ng). Alors n > ng et ||[un, —af < e.

&=) Réciproquement, supposons (3). Alors en particulier pour ¢ =1 et no =0, 3k > 0/ |lux — a]| < 1. Posons
©(0) =k.

1
Maintenant, 3k’ > @(0)+1/ |we —all < 3 Notons ¢(1) =k’. Ainsi, ¢(1) > ¢(0) et |[uy1)—al <

Soit n € N. Supposons que ’on a construit ¢ (0) < @(1) <--- < @(n) de sorte que

1
wpelonl fuep) —al <

Ainsi, Ik > on)+1/ Hui — aH < %_’_2 En notant @(n+1) :i, on obtient @(n+1) > @(n) et Hu(p(nﬂ) — aH <

i Ainsi, on a construit par récurrence une extractrice @ de sorte que
n
VTLGN, Hu(p(n)—aH < 711

Ceci montre que Uy () — a. L’équivalence est établie. |
n—-+4oo

THEOREME 17 : BOULE OUVERTE :

Toute boule ouverte est ouverte.

Démonstration. Soient v > 0 et x € E. Soit y € B(x,1).

/- N
Y, ad ~ \
Ve g \\
4 € \ \
1 y \| \
" 1 \
" X |
[ / b
[ 4
N - 1
\ e ___ 2 !
\ i
¥ /
A /
\ T /
\ ’
A 7
A 7
N 7
~ -
- -
~ o =

Alors ||[x —y|| < 1. Posons e =1 —||x —y|| > 0. Soit t € B(y,¢). Alors

=t =lx—y+y—t|
<=yl +lly =t
<|x—yll+e



=T

Ainsi, B(y,e) C B(x,7). On a montré que Yy € B(x,r),3e > 0/ B(y,e) C B(x,r), ou encore que B(x,r) est un
ouvert. |

THEOREME 18 : OUVERTURE ET REUNION/INTERSECTION :

e Une réunion quelconque d’ouverts est un ouvert.

e Une intersection finie d’ouverts est un ouvert.

Démonstration. Le résultat est clair si la réunion (resp. 'intersection) est vide.

e Soit O une famille non vide d’ouverts. Soit X = U 0. Soit x € X. Alors 30y € O/ x € Op. Mais Qg est un

Oeo
ouvert, fournissant ’existance de € > 0 tel que B(x,¢) C Og C X. On a montré que X est un ouvert.

n
e Soient n € N* puis Oq,---,0, n ouverts. Soit X = ﬂ O;. Soit x € X. Alors Vi € [1,n], x € O; donc

i=1

vie [1,n],Jei >0/ B(x,¢ei) C Os.

n
Soit € = ]r<ni£1 gi. Alors Vi€ [1,n], B(x,¢e) C B(x,¢&i) puis Vi € [1,n], B(x,¢e) C O; ou encore B(x,¢) C ﬂ 0; =

i=1

X. ]

THEOREME 19 : OUVERTURE ET PRODUIT CARTESIEN :

Soient p € N* et (E1,Ny),---,(Ep, Np) p espaces vectoriels normés. Munissons Ey X --- x E,, de la norme produit ¢.

Si O1,--+,Op sont des ouverts respectifs de Eq,--- ,Ep, alors O7 x --- x O, est un ouvert de Eq x --- X E,,.

P
Démonstration. Soit x = (x1,--- ,Xp) € HOi. AlorsVi € [1,p], xi € Oi. Donc Vi € [1,p],3ei >0/ B(xi,¢e1) C
i=1

O;. Soit ¢ = 1r<nii£1p£i. Soit y = (y1,---,Yp) € BE1X...XEP(X,£). Alors @ (x —y) = @ (X1 —Y1, - ,Xp —Yp) < &
Ainsi, Vi € ﬂ],pﬂ,i Ni (xi —yi) < e < g Ainsi, Vi € [1,p], yi € B (xi,¢€i). Ainsi,

P P

Be, x-.xE, (X, €) C HB (xi,€1) C Hoi-

i=1 i=1

P
Ainsi, I I O; est un ouvert. n

i=1

THEOREME 20 : CARACTERISATION SEQUENTIELLE DE LA FERMETURE :

Soit A C E.

A est fermé si et seulement si toute suite convergente a éléments dans A est de limite dans A.

Démonstration. =) Supposons que A est fermé. Donc A® est ouvert. Soit (xn),cy une suite convergente &
éléments dans A de limite, disons £. Supposons par absurde que ¢ ¢ A.

A

A
Xo X1 X2 X3 \

Puisque (xn),cn
arbitrairement proche
de £, des termes seraient
forcés a sortir de A sous
I’hypotheése que ( ¢ A.

devient

10



Puisque £ € A€ qui est un ouvert, alors il existe ¢g > 0 tel que B ({,e0) C AS.

Maintenant, AN € N/¥n >

N, ||xn —¥]| < 0. Ainsi, x est un terme de la suite qui est dans B (¢, ¢9) C A€ done xn ¢ A. Ceci est absurde. On

a montré que { € A.

<) Inversement, raisonnons par contraposée. Supposons que A n’est pas un fermé. Construisons une suite con-

vergente & éléments dans A de limite qui n’est pas dans A.

A€ n’est pas un ouvert. Alors il existe x € A€ tel que Ve >0, B(x,¢) ¢ A€ ou encore

Ve >0, B(x,e)NA#®a.

1
n+1

Soit n € N. Alors B (x, ) N A # & ou encore,

1
vyneNIx, € A/ x, €B (X’n—i—]> NA.

Ainsi, (Xn), ey € AN et xn X bien que x ¢ A. La caractérisation est établie. |
n—-+4oo
THEOREME 21 : BOULE FERMEE :
Toute boule fermée est fermée.
Démonstration. Soit x € E et T > 0. Montrons que (Bf(x,7))° est un ouvert. Soit y € (B¢(x,71))°. Alors,

=yl >

Posons alors € = ||[x —y|| — 7 > 0. Soit t € B(y, ¢). Alors |jy —t|| < ¢ puis

[x =t =[[(x—y)—(t=y)|
> | x =yl —lt—yll|
=[x =yl — It —yll
> x—vyl—e

=T.

Ainsi, t €¢ B¢(x,7). On a montré que Yy € (B(x,1)),3e >0/ B(y,e) C (B¢(x,7)), ou encore, que B¢(x,T) est un

fermé.

THEOREME 22 : FERMETURE ET REUNION/INTERSECTION :

e Une réunion finie de fermés est un fermé.

e Une intersection quelconque de fermés est un fermé.

Démonstration. Le résultat est clair si la réunion (resp. intersection) est vide. Supposons le contraire.

11




n n
e Soient n € N* et Fy,--- ,F, n fermés. Soit X = U Fi. Alors X¢ = ﬂ F{ donc sera un ouvert par stabilité de
i=1 i=1
I'ouverture par intersection finie. Ainsi, X est fermé.

e Soient F une famille de fermés et X = ﬂ F. Alors X¢ = U F¢. Ainsi, X® est un ouvert tant que réunion

FeF FeF
quelconque d’ouverts. On a montré que X est un fermé. |

THEOREME 23 : FERMETURE ET PRODUIT CARTESIEN :

Soient p € N* et (E;,Ny),---,(Ep, Np) p espaces vectoriels normés. Munissons Ey X --- x E, de la norme produit ¢.
Si Fq,---,Fp sont des fermés respectifs de Eq,--- ,Ep, alors Fy X --- x F, est un fermé de By x --- X E,,.
P N
Démonstration. Soit (xn) = ((XQ],--~ ,Xilp]» y € (H Fi> . Supposons que (xn), ¢y converge. Alors Vi €
ne
i=1

1, pl, (xg)) converge dans (Ei, N;) disons vers £V, Puisque pour tout i € [1,p], (x](f)) € F' et Fyi est
neN neN
fermé, alors £V € F; puis

ngrfooxn = (ﬂm,~-- ,E(p]) eF x---xFp.

Ceci montre que Fq X --- x F,, est un fermé. |

THEOREME 24 : PROPRIETES DE L'INTERIEUR :
Soient A,B C E.
e Int(A) C A.

e Si A est un ouvert, alors Int(A) = A.
e Si A C B, alors Int(A) C Int(B).

Démonstration. e Le résultat est clair si Int(A) est vide. Supposons le contraire. Soit x € Int(A). Alors
dr >0/ B(x,r) C A. En particulier, x € B(x,1) C A. Donc x € A.

e Supposons que A est un ouvert. Si A = &, rien a montrer. Supposons que A est non vide. Soit x € A. Alors
dr >0/ B(x,r) C A. Mais ceci montre que x € Int(A) donc A C Int(A) puis I’égalité.

e Si 'un de Int(A) ou Int(B) est vide, la propriété est évidente. Supposons qu’aucun n’est vide. Soit x € Int(A).
Donc 3r > 0/ B(x,1) C A C B. Donc x € Int(B). On a montré I'inclusion. [ |

THEOREME 25 : CARACTERISATION DE L'INTERIEUR :
Soit A C E.

Int(A) est le plus grand ouvert de E (au sens de l'inclusion) contenu dans A.

Démonstration. La propriété est immédiate si A = @. Supposons le contraire.

D’abord, Int(A) est un ouvert contenu dans A; soit x € Int(A). Alors Ir > 0/ B(x,r) C A donc Int(B(x,1)) C
Int(A). Mais B(x,1) est ouvert, donc Ir > 0/ B(x,r1) C Int(A). On a montré que Int(A) est un ouvert et, de plus,
Int(A) C A d’aprés le dernier THEOREME.

Soit B un ouvert dans A. Montrons que B C Int(A). Mais B C A, donc Int(B) C Int(A) et par ouverture de B, on
obtient Int(B) = B, puis 'inclusion désiriée. La propriété est établie. |
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THEOREME 26 : PROPRIETES DE L’ADHERENCE :
Soient A C E.

e A C Adh(A).

e Si A est fermé, alors A = Adh(A).
e Adh(A)° =Int (A€).

o Adh (A€) =1Int (A)S.

Démonstration. e Si A = &, ¢’est immédiat. Sinon, soit x € A. Soit v > 0. Alors x € A N B(x, 1) et en particulier
ANB(x,1) # @, donc x € Adh(A). L’inclusion est établie.

e Supposons que A est fermé. Si A est vide, ¢’est immédiat. Sinon, soit x € Adh(A). AlorsVr >0, B(x,1)NA # @.
En particulier,

1
vneN,Ix, € A/ x, €B (X’n—i—1> .
Ainsi, (xn),cy est une suite convergente vers x est qui est & éléments dans A qui est fermé. Ainsi, x € A puis
Adh(A) C A ou encore Adh(A) = A.
e Soit x € E.
x € Adh(A)¢ <<= Ir >0/ Bx,71)NA=02

& dr>0/ B(x,r)CAS

& x € Int (A°).
L’égalité est démontrée.

e Maintenant, (Adh (A€))¢ = Int ((AC)C) = Int(A) d’aprés le dernier point. On obtient ’égalité par passage au
complémentaire. [

THEOREME 27 : CARACTERISATION DE L’ADHERENCE :
Soit A C E.

Adh(A) est le plus petit fermé de E (au sens de 'inclusion) contenant dans A.

Démonstration. Encore une fois, le cas oul A est vide est trivial. Supposons le contraire. Adh(A) est un fermé qui
contient A ; déja A C Adh(A) et Adh(A)€ = Int (A€) est un ouvert, donc Adh(A) est fermé. Maintenant, soit F un
fermé tel que A C F. Donc F¢ C A€ puis Int (F¢) =F° C Int (A°) = Adh(A)¢. Ainsi, Adh(A) C F. Ceci montre la

S —

F¢ est ouvert

propriété. |

THEOREME 28 : CARACTERISATION SEQUENTIELLE DE L’ADHERENCE :
Soit A une partie non vide de E.

x est adhérant & A si et seulement si il existe une suite & valeurs dans A qui converge vers x. Autrement dit,

X €A I (xn)pey €AY/ lim xy =x.

n—-+oo

Démonstration. Soit x € E.

—) Supposons que x € A. Alors Ve >0, B(x,¢) NA # @. Ainsi,

1
vneN,Ix, €A/ xneB<x,n+1>.

Ainsi, la suite (xn), oy € AN et tend vers x.
<=) Supposons qu’il existe une suite de terme général x,, & termes dans A et qui tend vers x. Soit ¢ > 0. Alors

il existe un rang N € N & partir duquel u,, € B(x,¢). Ainsi, un € AN B(x, €) et en particulier, A N B(x,¢) # &. La
caractérisation est étbalie. [ ]
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THEOREME 29 : OUVERT RELATIF :
Soit A C E. Soit Oa C A. Les propositions suivantes sont équivalentes :
e OA est un ouvert relatif de A.

eVx e Op,dr>0/ ANB(x,1) C OAa.
o 1] existe un ouvert O de E tel que Oo = O NA.

Démonstration. =) Supposons que Vx € Oa,3dry >0/ ANB(x,7x) C Oa. Posons O = U B (x,71x). Alors O

XEOA
est un ouvert de E et Oa = ANO car Op CO et Op C A donc O C ONA, puis :

OﬂAz(U B(x,rx)> <U B (x,7Tx) ﬂA) (U OA>—
x€O A x€O0 A x€O0 A

&) Supposons qu’il existe un ouvert O de E tel que Op = ONA. Soit x € Op. Alors x € O et x € A. Ainsi, il
existe 1 > 0 tel que B(x,r) € O. Donc B(x,1)NA C ONA =0a. La propriété est démontrée. |

THEOREME 30 : FERME RELATIF :
Soit A C E. Soit FA C A. Les propositions suivantes sont équivalentes :
o F 5 est un fermé relatif de A.

e A\ Fa est un ouvert relatif dans A.
e Il existe un fermé F de E tel que FA = FNA.

Démonstration. =) Supposons que Oa = A\ Fa est un ouvert relatif dans A. Alors FA = AN 0% . Maintenant,
il existe un ouvert O de E tel que O = O N A. Alors

FA=AN(ONA=AN(A°UO%) =(ANAS)U(ANO°) =AnNO°".

Ainsi, OF est est fermé (car est le complémentaire d’un ouvert) et, finalement, F5 est Uintersection de A et un fermé
de E.

<) Réciproquement, supposons qu’il existe un fermé F de E tel que FA = ANF. Alors,
FA=AN(F) =AN((F)UAS) =AN(F NA)=A\(FFNA).

Ainsi, O := F* N A est un ouvert relatif de A. Ceci montre la propriété. |

THEOREME 31 : CARACTERISATION SEQUENTIELLE D’UN FERME RELATIF :

Soient A une partie de E et F C A.

F est un fermé relatif si et seuelement si pour toute suite & éléments dans F, si elle converge vers { dans A, alors { € F.

Démonstration. =) Supposons que F est un fermé relatif de A. Soit Fg un fermé de E tel que F = Fg N A. Soit
(Xn) ey une suite a éléments dans F qui converge vers { € A. Ainsi, (xn), oy est en particulier & éléments dans Fe.
Donc £ € Fg puis £ € Fg N A =F. La propriété est démontrée.

<) Supposons que F n’est pas un fermé relatif de A. Alors A \ F n’est pas un ouvert relatif de A. Ainsi,

Ix e A\F/Ve >0, ANB(x,¢e)Z A\F
Ainsi, x est fixe et
Ve >0, ANB(x,e)N(A\F) #2.
Mais ANB(x,e) N(A\F)*=ANB(x,e) N(ANF)  =ANB(x,e)N(AUF) =ANB(x,e)NF=FNB(x,e¢). Ainsi,
1
vn € N,3Ix, € F/ xn€B<x,>.
n+1

Ainsi, (xn), ¢y est & valeurs dans F et tend vers x € A\ F. Ceci achéve la démonstration. [ |
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Dorénavant, (E,N) et (F,N’) sont deux espaces vectoriels normés, A C E et f: A — F.

THEOREME 32 : CARACTERISATION SEQUENTIELLE DE LA LIMITE D’UNE FONCTION :
Soit a un point adhérant a A.

La fonction f tend vers € lorsque x tend vers a si et seulement si pour toute suite (xn ),y & valeurs dans A convergente
vers a, la suite (f (xn)), oy converge et tend vers {. Autrement dit,

lim f(x) ={ & (V(xn)neN e AN, nglfoox“ =a= lim f(xn)= E) .

x—a n—-+4oo

Démonstration. =) Supposons que f tend vers { lorsque x tend vers a. Soit (xn ),y une suite d’éléments de A
qui tend vers a. Soit ¢ > 0 et x € A. Alors il existe 5 > 0 tel que si N (x — a) < &, alors N’ (f(x) — {) < «.

Idem, il existe un rang N tel que si n > N, alors N (x, —a) < 6. Mais alors Y¥n > N; N(x, —a) < § =
N’ (f (xn) —{) < &. On a montré que la suite du terme général f (x,,) converge et, de plus, tend vers {.

<&=) Démontrons la réciproque par contraposition. Supposons que f(x) ne tend pas vers { quand x tend vers a.

Donc
Jep >0/V8>0,Ix € A/ N(x—a)<det N (f(x)—4L) >¢ep (%).

Construisons une suite (x,),, oy d’éléments dans A qui converge vers a bien que (f (xn)), oy ne tend pas vers £.

Soit n € N. La proposition (*) fournit

1
vneN,Ix, €A/ N(xnfa)<n et N/ (f(xn) — ) > €.

+1

La suite du terme général est a valeurs dans A et tend vers a, bien que (f (xn)),,cy ne tend pas vers €. L’équivalence
est établie. ]

THEOREME 33 : UNICITE DE LA LIMITE D’UNE FONCTIONS :

Si f admet une limite en un point, alors celle-ci est unique.

Démonstration. Supposons qu’il existe deux vecteurs {7 et £, vers lesquels f tend lorsque x tend vers a. Soit une
suite (xn), oy & éléments dans A qui tend vers a. Alors {; = 1iI£ f(xn) = €2 et c’est fini par unicité de la limite
n—-+4oo

d’une suite. |

THEOREME 34 : CARACTERISATION SEQUENTIELLE DE LIMITE EN *£00 :
Supposons que E = R.

e Supposons que A est non minorée. f tend vers £ quand x tend vers —oo si et seuelement si pour toute suite (xn), ¢y
d’éléments dans A qui tend vers —oo, (f (xn)), <y tend vers €.

e Supposons que A est non majorée. f tend vers £ quand x tend vers +oo si et seuelement si pour toute suite (xn), oy
d’éléments dans A qui tend vers +o00, (f (xn)), <y tend vers €.

Démonstration. La construction est analogue a celle du THEOREME 32. ]

THEOREME 35 : LIMITE DE FONCTION SUR UN ESPACE PRODUIT :

P
Soient p € N* et Eq,--- ,E,, p espaces vectoriels normés. Supposons que f: A — H Ex
k=1
x — (f1(x), -, fp(x))
P
f admet une limite £ = (£, ---,€,) € H Ex en a si et seuelement si Vk € [1,p], fx admet une limite en a et

k=1

lim fk(X) = ﬂk.
Xx—a
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Démonstration. On utilisera la caractérisation séquentielle de la limite d’une fonction et le THEOREME 15. |

THEOREME 36 : LINEARITE DE LA LIMITE :
Soient f1,f; : A — Fet Aj, A2 € K.

Sif; —— £y et f —— £, alors
x—a x—a
M1+ A2 —— Al + A0,
x—a

Démonstration. On utilise la caracterisation séquentielle de la convergence. |

THEOREME 37 : LINEARITE DE LA LIMITE :
Soient f: A — Fet o : A— K.

Sif—— et @ —— A, alors
X—a X—a

of — AL

xX—a
ounpf: A—F
x — @ (x)f(x)

Démonstration. Soit (xn),,cy une suite d’éléments de A qui tend vers a. Soit n € N.

H(P (xn) f(xn) — )\f” = H(P (xn) f(xn) — @ (xn) L+ [ (xn) € — 7\€H
= [l@ (xn) (f (xn) =€) + € (@ (xn) — A
<o ) If (xn) — €[ + el [l (xn) — Al

(@ (xn))ncn est bornée car elle est convergente. Ainsi, [[@ (xn) f (xn) — AL|| = 0. Ceci achéve la démonstration.
n——+oo
[ |

THEOREME 38 : LIMITE ET QUOTIENT :

Soit f: A — K.
: 1 . . . . 1 1
Sif—— et f=£0, alors — est bien définie sur un voisinage relatif de a et - —— —.
x—a f f x—a ¢
Démonstration. 7 est bien définie sur au moins un voisinage relatif de a, car
{
In>0/vx e ANB(a,n), [f(x)—{< |—2|;
. i . ¢ -
ainsi, Vx € AN B(a,n), [ —If(x)] <€ — [Ff(x)]| < € —f(x)] < 5 puis [f(x)] > 7 et en particulier f(x) # 0.
Soit (Xn), ey une suite a éléments dans A qui tend vers a. A partir d’un certain rang, (f x )> est bien définie
n €N
puis "
1 1 |6 —f (xn)l 1 2
——| = < fxn) =l =—|f(xn)—f —0.
‘f(xn) e‘ [0TF () mm' bn) =l = 1P o) =t g
2
D’oit le résultat. u

THEOREME 39 : LE THEOREME DE COMPOSITION DE LIMITES :
Soient E, F et G trois espaces vectoriels normés. Soient A C Eet B C F,puisf: A — Fet g: B — G tels que f(A) C B.

Sif —— betg—— ¢ alorsgof —— L.
x—a y—b x—a
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Démonstration. Soit (Xn),cy € AN tendant vers a. (f (Xn))nen € BY et tend vers b. En particulier, (g (f (X)) ey =

N
((gof) (xn)),cy tend vers €. Le théoréme est établi. |

THEOREME 40 : LES THEOREMES GENERAUX DE CONTINUITE :

e La combinaison linéaire de fonctions continue est continue.

e Le produit d’une fonction continue & valeurs dans K avec une fonction continue est continue.
e La composition de fonctions continue est continue.

e Si une fonction est a valeurs dans K et ne s’annule pas, alors son inverse est continue.

Démonstration. Résultats immédiats des théorémes généraux sur les limites. |

THEOREME 41 : FONCTION LIPSCHITZIENNE ET CONTINUITE :

Toute fonction lipschitzienne est continue.

Démonstration. Soit k > 0 tel que V(x,y) € A%, N’ (f(x)—f(y)) < kN(x —y). Soit ¢ > 0 et x € A. Soit

=—— Al
1 D ors 1 >0 et
€
WEA, YyEBN) = Nix—y) <~
= kN(x—y) < (k+T1)N(x—y) <e¢
= N'(f(x) = f(y)) < e
= f(y) € B(f(x),¢).
Ceci montre que f est continue en tout point x € A. |

THEOREME 42 : CARACTERISATION DE LA CONTINUITE PAR PRESERVATION DE L’OUVERTURE/FERMETURE EN
PASSANT A L'IMAGE RECIPROQUE :

e f est continue sur A si et seuelement I'image réciproque de tout fermé de F par f est un fermé relatif de A.

e f est continue sur A si et seuelement I'image réciproque de tout ouvert de F par f est un ouvert relatif de A.

Démonstration. Supposons que f continue sur A. Soit V un fermé de F. Si f~'(V) = @, c’est fini. Supposons le
contraire. Soit (xn), cy une suite d’éléments de f~1(V) qui converge dans A disons vers x. Ainsi,

vyneN, 3y, € V/ f(xn) =Yn.
Puisque xn, ~—+——> x et f est continue, alors f(xn) = yn — f(x). Par fermeture de V, f(x) € V ou encore
n—+oo n—-+
x € (V). On a montré que f~' (V) est un fermé relatif de A. On a montré que

f est continue sur A =—> l'image réciproque de tout fermé par f est un fermé relatif de A (x).

Supposons que 'image réciproque de tout fermé par f est un fermé relatif de A. Soit O un ouvert de F. Alors F\ O
est un fermé de F. Donc ' (F\ O) = A\ £ '(O) est un fermé relatif de A, ou encore ' (O) est un ouvert relatif de
A. On a montré que

I'image réciproque de tout fermé est un fermé relatif — Dimage réciproque de tout ouvert est un ouvert relatif — (xx).

Supposons que 'image réciproque de tout ouvert est un ouvert relatif. Montrons la continuité. Soient y € A et
e > 0. B(f(y), €) est un ouvert de F, donc f~'(B(f(y), €)) est un ouvert relatif de A. Puisque y € f~'(B(f(y), ¢)) alors
il existe 1 > 0 tel que B(y,n) NA C f ' (B(f(x),¢)). Ceci montre la continuité de f en tout point y € A. ]

THEOREME 43 : CARACTERISATION DE LA CONTINUITE D’UNE APPLICATION LINEAIRE :
Soit w € L(E,F).

e u est continue si et seuelement si il existe un réel positif C tel que Vx € E, |Ju(x)|| < C||x]|.

e u est continue si et seuelement si elle est bornée sur la boule unité fermée.
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Démonstration. e =>) Supposons la continuité. L’inégalité est évidente pour x = 0. Soit x € E\{0}. La continuité
en 0 donne

1
M>0/My el [yll<n= [uly)l < 7"

n n
—x|| = = <mn. Donc
2||x| 2

<=) Réciproquement, supposons que 3C > 0/¥x € E, |[u(x)|] < C||x||. Soient x,y € E. Alors

Mais,

1 1 1
u [lu(x)]] < = ou encore ||u(x)|] < —||x||. Ainsi, C = — convient.
<2|| I )H 2|| | 2 n n

ulx) —uylll = [[ulx =yl < Clx -yl

Ainsi, u est C-lipschitzienne, ce qui fournit la continuité.

=) Supposons que 3C > 0/Vx € E, [Ju(x)|| < C|x|]. Soit x € B¢(0,1). Alors [[u(x)]] < C|lx|]] < C et
I’implication est établie.

<) Supposons que u est bornée sur la boule unité fermée. Soit x € E\ {0}. Alors

u(ﬁﬁﬂ ]

Ceci fournit Vx € E\{0}, |lu(x)]] < C|x||. Cette inégalité reste vraie pour x = 0. |

a5 > 0/ ‘ lutol < €

THEOREME 44 : APPLICATION LINEAIRE EN DIMENSION FINIE :

Toute application linéaire sur un espace de dimension finie est continue.

Démonstration. Soit u € L(E,F). Supposons que E est de dimension finie p de base disons (ey,---,ep). Puisque
les normes sur E seront équivalentes, peu importe la norme choisie pour montrer la continuité. Montrons alors que u
P
est continue ol E est muni de la norme infinie. Maintenant, soit x = inei € E. Alors,
i=1
o)
[[u(x) u inei
P
- |3 xauten
i=1
P
ZIXJ [ (es)]
P
<D Il elen)]
i=1
P
= [Ixlloe ) I led)]
i=1
o)
Avec C = Z |lu(ei)||, on prouve la caractérisation, ce qu’il fallait démontrer. [ ]
i=1
THEOREME 45 : NORME SUBORDONNEE D’UNE APPLICATION LINEAIRE CONTINUE :
Soit uw e L.(E,F).
L’ensemble {C >0, Vxe€E, [u(x)] <C|x|} admet un minimum dit norme subordonnée de u et est notée ||[ulll.
De plus,
[w)|l
[[lulll = sup
x#0 HX”
= sup [lu(x)]|
IxlI<1
= sup [[u(x]].
lIx)l=1
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u(x
Démonstration. u est continue. Ainsi, 3C > 0/Vx € E, ||u(x)]| < C||x||. Ceci donne que { ” ”( ”)', X € E\{O}}
X
. . : o . iedl
est une partie majorée et non vide de R, justifiant I’existance de sup X
x#0

Alternativement, u est bornée sur la boule unité fermé et en particulier sur la sphére unité, fournissant I’existance
de sup |u(x)| et de sup [u(x)]].

lIxl[<1 lIx[I=1
e Soit x € E tel que ||x]| < 1. Si x =0, alors il est immédiat que ||u(x)|| =0 < sup eIl T il . Sinon,
x;éO
u(x) u(x)
Xl ™ xz0 X
‘s ull . e .
Ainsi, Vx € B¢(0,1), [Ju(x)|| < sup ol puis, par définition de la borne supérieure,
y#0 Y
sup |u(x)|| < su ||u(x)||.
Ixll<1 xz0  |[x]]
Inversement, soit x # 0. Alors [uCol = H ( >H sup ||u(y)|\ Donc
x| [l yeB
[u(x)]
< sup u(x]].
oo Xl = e

On a montré la premiére égalité.

e Déja, S(0,1) C B¢(0,1), donc sup |[u(x)|| < sup [Ju(x)||. Soit maintenant x € E tel que ||x|| < 1. Si ||x]| =0, il
[Ix[I=1 [xl<1
sera immédiat que [ju(x)|| =0 < sup |[u(x)||. Sinon,

()
‘”(| [ )H

< Il sup [y

= [l

ps lull=
< sup |lu(yl].
llyll=1
Ainsi, Vx € B¢(0,1), |lu(x)|| < sup [[u(y)| puis sup [[u(x)]| = sup |[u(x)||. Ceci fournit la deuxiéme égalité.
llyll=1 lIx[I<1 [Ix[[=1
e Finalement, montrons que M := |L|L|E:|()” =mina ou & ={C>0, VxekE, Ju(x)|]|<C|x|} Pour cela,
x#0

on va montrer que M € &7 et que VC € &/, M < C.

Soit x € E. Il est immeédiat que ||u(x)|| < M||x|| pour x = 0. Dorénavant, x # 0. Alors IOl I ” < sup fu H y”” =M,
y#0 [IY
d’ont |Ju(x)]] < M||x|]. On a montré que M € 7.
Maintenant, soit C € «/. Alors ¥x # 0, Hlﬁzﬁ” < C. Ainsi, par définition de la borne supérieure, M =
[u(] e o
< C. La propriété est (finalement) établie. [ ]
20 x|

THEOREME 46 : NORME SUBORDONNEE :

Soient w € L (E,F) et x € E.

Alors [|u(x)]| < [lhulll - [x]|-
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Démonstration. Par définition. |

THEOREME 47 : SOUS-MULTIPLICATIVITE :

Soient w € L (E,F) et v e L.(FG). Alors
v ol < flfwllf - [[vIll.

Démonstration. Soit x € E tel que ||x|| = 1. Alors

[ (vou) ()| = [[vuO)I < VI (e OCA T < MIVIE Tl {1x]] = (Il Tl
Ainsi, sup [|[(vou)x)|| < IVl - lulll. Mais sup ||(vou)(x)|| =[llvoulll ce qui achéve la démonstration. [ ]
[Ix|I=1 [Ix|[=1

THEOREME 48 : CARACTERISATION DE LA CONTINUITE D’UNE APPLICATION MULTILINEAIRE :

P
Soient p € N* et Eq,---,E, p est espaces vectoriels normés. Munissons 1'espace H Ex de sa norme produit. Soit F

k=1
un espace vectoriel normé.

Soit @ : Ey X -+ x E,, — F une application multilinéaire. Alors ¢ est continue si et seuelement si

P P
IC >0/ (e yxp) € [[ B Mo (xayo x| < CT T Il -
k=1 k=1

P
Démonstration. =—>) Supposons la continuité. Soit (Xk)1<k<p € H Ex Si 'un des xy est nul, la propriété est

k=1
vérifiée pour n’importe quel C > 0. Supposons le contraire.

P
Il existe alors 1 > 0 tel que pour tout (Uk)lgkgp € HEk’ si[[(y1,---,yp)|l <m, alors |[@ (y1,---,yp)|| < 1. Or,
k=1

n n n
Xy ooy 5 X == <.
H<2ll><1 177 7 2 x| p)H 2

Donc, ||¢ <2||11X1,'~ ,ZH]lp”Xp)H <1. Or
H(‘) <2||11||""’” ’2|?<p|"P)H - qun]n X g )
— L et .
LTl
k=1
Ainsi,

pLJ
H(P(X],"' ax‘p)H < 117]11 HXk” .

2r .
Donc C = ey convient.

<) Supposons 'existance d’une constante C vérifiant telle inégalité.

Si p = 2, on est dans le cas d’une application bilinéaire. Soit ((xn,Yn))ney € (E1 X EZ)N convergente vers
(x,y) € By x Ez. Alors

vnelN, [lo(xn,yn) = @XY)ll = [l@ (Xn,yn) + @ (xn,y) — @ (xn,y) — @(x,y)|
=@ (xnyYn —Y) + @ (xn —x, Y]
< [lo xnyyn =yl + @ (xn —x,Y) |
< Clxnll - [lyn =yl + Clixn = x| - [lyll
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n—-+oo

Ceci fournit la continuité de @.

Le résultat général se démontre de fagcon analogue ;

N
P
Soit (xgn), e ,XI(D“)) € (H Ek> qui tend vers (x7,---,Xp). Soit n un entier naturel. Pour conformité de

k=1
notation, on notera x(™ = (x%n), e ,X](Dn)) et x = (X1, ,Xp). Alors
o <) - 0 o (7)o (7 ) (7 ) o]
- H(" (Xgn)‘... X0 X _Xp) +o (Xgm’ . >X‘E)n—)1’xp) — 0 (X)H
o (2 A )] o (s )

Maintenant, par hypothése, il existe C > 0 tel que

p—1
o Gam oo =xp )| < € = TT | = 0
k=1

p—D 7P n—-+oo
Idem,
p—1
() (n) (n)
o (™ =g = )| < Clhol TT o =i s
k=1
Ceci achéve la démonstration. [ ]

THEOREME 49 : CONTINUITE DES APPLICATIONS MULTILINEAIRES END DIMENSION FINIE :

Soit ¢ une application bilinéaire sur un produit d’espaces tous de dimensions finies.

Alors ¢ est continue.

Démonstration. Gardons les mémes notation que la démonstration précédante. Pour tout k € [1,p], fixons ny =
dim Ex et By = (egk),~-~ ,eﬂ?) une base de Ex. Soit x = (x1,---,%p) € By x --- x Ey puis Vk € [1,p], xx =

Zx.(k)egk). Alors,

1

ng MNp
(M m (p) (p)
”‘P(X]»"'»Xp)H: [ th €, »"'»inz ei]:
i = ip=
ng Np
1) ) (1) (p)
= Z ZX£1 '~-X(]:(p(611 ) )el]:)
L]—] ip:1
_ (M (p) (1) (p)
B Z X11 le @ (en ) ’elp )
(il""vip)el_[E:][“)nk]]

< 2

(:Ll 3t »:Lp )EHE:] [[1 »nk]]

(p)
ol

1
H(p (egl)’,.. )eg))H

(1) (p)
< > vl Iepllog |0 (€Ll e
(i1y'“7i‘p)€l_[7k1:][[]$nk]]
(1 (p)
- > o (et e)| ) Iherlloa - lxp o -
(i],---,ip]GHE,]HLnkH
C
La caractérisation est établie. [ |
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THEOREME 50 : CONTINUITE DES FONCTIONS POLYNOMIALES :

Toute fonction polynomiale est continue.

n n
Démonstration. Soit 8 = (e7,--- ,en) une base de E et f:x = Z Xie; — Z Ay ko Hxl.f‘ polyno-
i=1 (1, kn)ENT i=1
miale. Il y’en a plusieurs approches.

En utilisant les théorémes généraux : pour tout (k1,---,kn) € N, I'application

n
Cy k k
Pkyyee kn X = E xiey > xq! X"
i=1

n
est continue ; 'application x = E xiei — X; est continue car linéaire (projection sur la droite vectorielle Ke;) sur un

i=1
n

espace de dimension finie. Ainsi, x = E Xiei — xlfi est le produit (usuel) de k; forme linéaires continues donc est
i=1

continue. Ce méme dernier argument s’applique pour établir la continuité de @i, ... x, . Ainsi, f est une combinaison

linéaire finie des @y, ... k, (car les Ay, ..., s’annulent le moment ou chaque ki dépasse un certain rang) donc est

continue.

n

En utilisant la caractérisation séquentielle : claire. |

THEOREME 51 : COMPACITE ET VALEURS D’ADHERENCE :

Soit K un compact et (un), cnekn-

(Un) ey converge si et seuelement si elle admet une unique valeur d’adhérence.

Démonstration. On sait déja que si une suite converge, alors elle admet une unique valeur d’adhérence. Etablissons
la réciproque.

Supposons que (un ),y admet une unique valeur d’adhérence €. Supposons par absurde que ¢ n’en est pas limite.
Ainsi,
Jeo >0/YN €N, In >N/ Jlun — £ > eo.

En particulier, 3n > 0/ ||un —£|| > €0. Notons n = @(0). Mais alors In’ > @(0) + 1/ |un, —¢|] > ¢o. Notons
n’ = @(1). On aura (1) > ¢@(0). Par récurrence, on poura alors exhiber une extractrice ¢ strictement croissante telle
que Vn € N, Hu(p(n) — (’,H > €0. Maintenant, <u‘P(“))neN est & valeurs dans le compact K, donc admet une sous-suite

(u(q,oq))(n))n N qui converge vers une valeur d’adhérence de (un) Mais par hypothése, il n’existe qu’une seule,

nenN-
a savoir {. Donc Wy (yn)) —+> { bien que Vn € N, Hu(p(q,(n)) — EH > ¢o. Ceci est absurde. On en déduit que
n—-+4oo

u, —— L. ]
n—-+4oo

THEOREME 52 : COMPACITE, FERMETURE ET BORNITUDE :

Tout compact est fermé et borné.

Démonstration. Soit K C E un compact. Soit (un), oy € KN convergente vers €. Alors (Un)p ey admet une sous-
suite convergente vers {’ € K. Par unicité de la valeur d’adhérence d’une suite convergente, £ = {’ € K. Ceci montre
que K est fermé.

Supposons qu'il n’est pas borné. Alors YM > 0,3x € K/ ||x|| > M. En particulier, Yn > 0,3x, € K/ ||xn|| > n.

La suite (xn),,cp, étant a valeurs dans K, admet une sous-suite (x@(n))n cn convergente et en particulier bornée. Or,

vn >0, |[xem| > @) >mn. Donc |[xem)l —— 7 oo contredisant son caractére borné. On a montré que K est
n—-+oo

borné. -

THEOREME 53 : COMPACT AU SENS DE BOREL-LESBEGUES ET AU SENS DE BOLZANO-WEIERSTRASS :

Tout BL-compact est BW-compact.
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Démonstration. Soit K un BL-compact ie. pour toute famille d’ouverts (U;);.; (I quelconque) telle que K C U U,
iel
il existe une sous-famille finie ] C I telle que K C U U;.
ie]

Soit (Xn) ey € KN. Supposons que telle suite n’a pas de valeurs d’adhérence dans K. Ainsi,
Vx € K,Jex >0/ card(n e N, [xn —x|| < ex}) < +o0.

Ainsi, K C U B (%, ex). Par hypothése, il existe donc un nombre fini d’éléments x1,---,%, € K tels que
xeK

K C U B (xi, €x;) -
1<i<p
Maintenant, le nombre d’indices n tels que x,, € K est infini, car la suite est dans K. Ceci implique qu’il existe
ip € [1,p] de sorte qu’il existe une infinité d’indices n tels que x,, € B (Xiwﬁxio) ; dans le cas contraire, il n’existera

qu’un nombre fini d’indices tels que xn € B (x4, €y, ) pour toutes les boules et par la suite, on n’aura qu’un nombre fini
d’indices tels que x,, € K. Ceci est absurde. On en déduit que K est comapact. |

THEOREME 54 : SOUS-PARTIES COMPACTES :

Toute partie fermée d’un compact est compacte.

Démonstration. Soit K un compact et A une partie fermée de K. Si K ou A est vide, c’est fini. On suppose le
contraire. Soit (Xn),cy € AN, En particulier, (Xn)nen € KN et par compacité de K, il existe une extractrice @ et

un vecteur { tels que x,(n) ——— { et { € K. Maintenant, (xq,(n]) e AN et est convergente vers £ et, par

n—-+oo nenN
fermeture de A, { € A. Ainsi, la suite (x),, oy admet au moins un valeur d’adhérence dans A. Ceci montre que A est

compact. |

THEOREME 55 : COMPACT PRODUIT :

Soient p € N*, Eq,---,E, p espaces vectoriels normés et Aj,---, A, des sous-parties compactes respectives. Alors
P P

]__[A;L est un compact de H Ei{ muni de sa norme produit.

i=1 i=1

Démonstration. Sil'un des A; est vide, le produit est vide et c’est fini. Démontrons le résultat pour le cas contraire
par une récurrence simple sur p.

Si p = 1, rien a faire. Pour alléger “I'idée de la récurrence”, traitons le cas p = 2. Soit (xn), oy une suite a

valeurs dans A; x A,. Ainsi, son terme général s’écrira x,, = (xg),xg)) onvn e N, x{)eAjetxl? eA,.

A Pp——10 D Maintenant,

Par compacité de Ay, il existe une extractrice @7 et un vecteur x1 e Ay tels que x
e1() 1o

(XE‘)Z1)(n)>nGN € Ag. Puisque A, est compact, alors il existe une extractrice @, et un vecteur x(2) € A, tels que
(2) (2) . . L, o (m (2) .
(91002)(n) m x'“). Finalement, la suite du terme général X (¢, 0p,)(n) = (X((PNMPZ)(T‘-)’X(QDI0@2)(“)) est extraite

de (xn), ey et tend vers (xm,x(z)) € A7 x A,. Ceci montre que A7 X A, est un compact.

Soit p > 2. Supposons que p — 1 produit de compact est un compact de l’espace produit.

N -1 N
Soit (Xn)peny = ((x;”, e ,X%p)>)n€N € (ﬁ Ai> . En particulier, ((xg), e ,ngfn))neN € <]i_[ Ai> . Ainsi,
1= =
il existe une extractrice @ et un vecteur (x(1;-.. ,x(p*”) € Ay X -+ X Ap_q tels que (XE;()n], e ,x;ﬁ;p) ———
(XU )) s xPT )) par hypothése de récurrence. Maintenant, (XE;)()TL))neN € Ag et par la suite, il existe une extractrice
P et un vecteur x(P) € A, tels que ng)ow)(n) m) x(P). Dans tel cas, X(@owp)(n) = (ngp)oll))(n)’ e ’Xgi)ow)(m) m
(x“ ) ,x(p)) € ﬁAi (convergence des suites en norme produit). Le résultat est établi par récurrence. [ ]
i=1
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THEOREME 56 : CONTINUITE ET COMPACITE :

L’image continue d’un compact est un compact.

Démonstration. Soient f: E — F continue et K un compact de E. Si K est vide, f(K) = @ est comapct. Supposons
le contraire. Soit (Yn), ey € (f(K)N. Alors

vneN,Ixn € K/ f(xn) =Yyn.

Maintenant, il existe une extractrice @ et un vecteur £ € K tels que xn ———— £. Ainsi, yon) = f (x(p(n)) — f(0)
n—-+oo n—-+4oo

par continuité de f. De plus, f({) € f(K), ce qui conclut la démonstration. [ |

CONTINUE :

Soit f : K — L continue et bijective.

Si K est compact, alors f~! est continue. Dit autrement, f est un homéomorphisme.

THEOREME 57 : CONDITION SUFFISANTE DE LA CONTINUITE DE LA RECIPROQUE D’UNE FONCTION BILJECTIVE

Démonstration. Supposons que K est compact. Montrons que f~' est continue en établissant la caractérisation
séquentielle ; soit y € L et (yn), ey € LY qui tend vers y. Montrons que f~' (yn) = 1(y).
n—-+oo

Montrons d’abord que la suite du terme général ! (yn) converge. Puisqu’elle est a valeurs dans K qui est
compact, il suffit de montrer qu’elle admet une unique valeur d’adhérence. Soit alors @ un extractrice de sorte que
(! (y<P(“J))neN converge, disons vers { € K. Pour tout n € N, soit x,, € K I'unique vecteur de K tel que f (xn) = yn.

Ainsi, f (x(p[n)) =Yop(n) m y. Mais d’autre part,

Yom) =F(F7 (Ypm))) —— f(O)

n—-+4oo

par continuité de f. Par unicité de limite, y = f(£) ou encore, £ = f~'(y). Ainsi, (fq (yn)) y admet une unique

ne
valeur d’adhérence, a savoir f~'(y). Puisque la suite est & valeurs dans un compact, alors £~ (yn) 4+) 1(y).
n—-+oo

Ceci montre la continuité. |

THEOREME 58 : IMAGE D’UN COMPACT PAR FFONCTION A VALEURS DANS R :
Soient A un compact non vide et f: A — R continue.

Alors f est bornée et atteint ses bornes ie. il existe x1,x, € A tels que f(x1) = mi/r\1 f(x) et f(x2) = max f(x).
XE Xe

Démonstration. T(A) est borné car compact tant qu’image continue d’un compact. Puisqu’il est de plus une partie
non vide de R, alors il admet des bornes supérieure et inférieure. Notons-les respectivement M et m.

M est limite d’une suite d’éléments de f(A) en vertu de la caractérisation séquentielle de la borne supérieure. Mais
f(A) est fermé car compact, donc M € f(A). Ceci prouve que M est atteint. Idem pour la borne inférieure. |

THEOREME 59 : THEOREME DE HEINE :

Soit f continue sur un compact. Alors elle est uniformément continue.

Démonstration. Soit f: K — F continue, o K est compact. Par absurde, supposons que f n’est pas uniformément
continue. Alors
Je > 0/vn > 0,3(x,y) € K/ |x—yll <met [[f(x) —fly)] > e.

€ est maintenant fixe. Il existe ainsi deux suites a valeurs dans K de termes généraux respectifs x,; et y,, de sorte que

vneN, |xn—ynl < et ||If (xn) —f(yn)] > €.

n+1
Déja, xn —yn —— 0. De plus, on peut extraire une sous-suite (x (n]) qui converge vers une limite que 1’'on
n—+oo @ neN
notera ¢ € K. Maintenant, Yo m) = Xpm) — (xq,(n) —y(p(n)) — { — 0 = {. Maintenant,

n—-4oo

meN, |If(xem) —f(Yem)|| > ¢
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et par passage a la limite (et continuité de f), on obtient
[£(6) = f(O)| =0 > e.
Ceci est absurde. On en déduit que f est uniformément continue. |

Dorénavant, E est un espace vectoriel de dimension finie dont on fixe une base # = (er,- -, ep).

THEOREME 60 : THEOREME DE BOLZANO-WEIERSTRASS EN NORME INFINIE :

(a priori, on ne sait pas si les normes sont équivalentes en dimension finie).

Dans un espace vectoriel de dimension finie, toute suite bornée admet une sous-suite convergente pour la norme infinie

Démonstration. On fera la démonstration par récurrence sur p la dimension de l’espace.

Initialisation : si p = 1. Soit (un),y une suite bornée a valeurs dans E = Vect (e7). Ainsi,
vneN,Ix, € K/ u, =xne;
et d’autre part, il existe M > 0 tel que Yn € N, |Ju,|| < M. Maintenant,
vneN, |xner| =xnller| <M.

M
Donc [xq| < H (ller]] > O car e # 0 tant que la famille (eq) est libre). Ainsi, (xn),cy est une suite numérique
1

bornée, donc admet une sous-suite (X(P(“))n cn convergente, d’apreés le théoréme de BOLZANO-WEIERSTRASS établi

dans le cas ou E =K. Ainsi, (ugm)), oy converge et Dinitialisation est établie.

N

Hérédité : soit p > 2. Supposons que toute suite bornée dans un espace de dimension p — 1 admet une sous-suite
convergente pour la norme infinie. Soit (wn),, oy une suite bornée a valeurs dans E = Vect (e1,---,ep), disons par
M > 0. Notons

P
mmeN, u,= ng)ei.
i=1

p—1
Notons aussi (vn), oy la suite du terme général v,, = Z xg)ei de sorte que Yn € N, u, =vn + xgp)ep.
i=1
Maintenant,
el [P < unl, <M.

. . . (p) o 4 (P)
Donc il existe une extractrice ¢ et £, € K tels que X (n) m {41 puis X (n)€p m) loep.

Maintenant, la suite (v(p(n))neN est & valeurs dans l’espace Vect (e, --,ep_1) qui est de dimension p — 1 et
est bornée tant que différence de deux suites bornées. Par hypothése de récurrence, il existe une extractrice \ et
L € Vect (e1,---,ep—_1) tels que V(poy)(n) — {. Finalement,

n—-+4oo

— (p)
U(pow)(n) = Vigow)(n) T X(goy)m)€r 7o {1 oep-

Le résultat est établi par récurrence. [ |

THEOREME 61 : THEOREME DE BOREL-LESBEGUES EN NORME INFINIE :

En dimension finie, les compacts sont les parties fermées et bornées pour la norme infinie.

Démonstration. Un sens est déja établi. Montrons qu’en dimension finie, si K est fermé borné (par la norme infinie),
alors K est compact. Supposons les hypothéses énoncées. Soit (xn),cy € KN, Alors (Xn)nen €st bornée et d’apres
le théoréme précédant, (xn), oy admet une valeur d’adhérence. Par fermeture de K, cette valeur d’adhérence en est
élément. On a montré que K est un compact. |

THEOREME 62 : EQUIVALENCE DE NORMES EN DIMENSION FINIE :

En dimension finie, toutes les normes sont équivalentes.
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Démonstration. Soit ||- || une norme sur E. On va montrer qu’elle est équivalente a la norme infinie, ce qui assurera
la véracité du théoréme par transitivité.

La sphére unité S de E pour la norme infinie est fermé et bornée. Ainsi, elle est compacte d’apreés le théoréme de
BOREL-LESBEGUES. Maintenant, montrons que application f: (E, |- |loo) — (R,[-|) est continue. Mais,

x = X[

P
Vx = inei €E, x| =

i=1

P
E Xi€i
i=1

xil [lei|

X[l lleill

= X[l (i ||€i||> -

P

<) |
i=1
)

<) |
i=1

P
Si on note k = Z llei]|, alors Vx € B, ||x]| < k||X||co. Ainsi,

i=1
Yix,y) € B2 [l = Iylll < [x =yl < Klx = ylloo-

Donc f est lipschitzienne et en particulier continue. Ainsi, f(S) est un compact de R. D’aprés le THEOREME 58, f(S)
admet un minimum et un maximum atteints que 1’on notera respectivement « et f3.

Maintenant, & # 0 et B # 0 ; il existe x1,x2 € S tels que f(x1) = a et f(x2) = B. Ainsi, [|x1]| = « ||x2]| = B.
Puisque [x1]|, = Ix2]|, =1, alors x1 # 0 et x2 # 0, fournissant « # 0 et 3 # 0.

1
Finalement, soit x € E \ {0}. Alors Tx € S. Donc

[xlloo

1
a<f (x) <p

[1Xloo

ou encore
o < ‘ —x| <P

[Xloo

soit
f[x[loo < fIx[] < BlIx[loo-

Cette inégalité reste vrai méme pour x = 0. Le résultat est établi. |

THEOREME 63 : THEOREME DE BOLZANO-WEIERSTRASS :

norme utilisée).

Dans un espace vectoriel de dimension finie, toute suite bornée admet une sous-suite convergente (peu importe la

Démonstration. D’aprés les THEOREMES 60 et 62. ]

THEOREME 64 : THEOREME DE BOREL-LESBEGUES EN NORME INFINIE :

En dimension finie, les compacts sont les parties fermées et bornées.

Démonstration. D’aprés les THEOREMES 61 et 62. [ |

THEOREME 65 : SUITES DE CAUCHY : PROPRIETES :
e Une suite convergente est de CAUCHY.
e Une suite de CAUCHY est bornée.

e Une suite de CAUCHY ayant une valeur d’adhérence converge.
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Démonstration. e Soit (Un),cy € EN convergente, disons vers ¢ € E. Soit € > 0. Alors
INeN/M >N, Jun— O < %

Soient n,m > N. Alors

£ €
Jtin =t < [fin = € + flum — 8 < 5+ 5 = .

D’ou le résultat.
e Soit (un),cy € EY de CAUCHY. Ainsi,
INeN/Nn,Mm>N, [un—um| <.

Alors,
V=N, unfl < flun —undl + llunll < T+ flundl-

Le majorant M = max (1 + |Jun]|, [|uoll, -+, [Jun—1]]) convient.

e Soit (Un), ey € EN de CAUCHY et a en est une valeur d’adhérence. Soit ¢ > 0. Alors

€
INeN/n,m>N, [[un—unyl < 7
Soit ¢ une extractrice telle que Uy (n) —— a. Alors
n—+oo
€
INTEN/YR =N, upm) —af < 3

Soit 1 > max (N,N’). Alors n > N et @(n) > N (car @(n) > n) puis

un = all < fun = o] + [em) — all

JELE
2 2
= €.

Ceci montre que (un ),y converge et vers a.

THEOREME 66 : ESPACES DE BANACH DE REFERENCE :
e R est de BANACH.

e R™ est de BANACH.

e Tout espace de dimension finie est de BANACH.

e Soit X un ensemble non vide et B(X, E) ensemble des fonctions bornées a valeurs de X dans E. On le munit de la
norme || - ||e dont on rappelle la définition :

xXe

Si (E,| - ||) est de BANACH, alors (B(X,E),| - |lco) est de BANACH.

Démonstration. Le premier résultat est connu depuis le S1. En général, si E est de dimension finie et on considére
une suite de CAUCHY dans E, alors celle-ci est bornée. Par théoréme de BOLZANO-WEIERSTRASS, elle admet une
valeur d’adhérence. Finalement, elle sera une suite de CAUCHY admettant une valeur d’adhérence, ce qui fournit la
convergence. Ceci montre que E est de BANACH.

Démontrons le quatriéme point. Supposons que E est de BANACH (sans mention de norme car il n'y a pas
d’ambiguité). Soit (), ey € (B(X,E))" de Cauchy. Ainsi,

Ve>0,IN e N/V\n,m >N, |[[fn —fmll <&
Ainsi,

Ve > 0,IN e N/Vn,m > N,Vx € X, |[fu(x) —fm(x)]| <& (x).
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En particulier,
Vx € X,Ve > 0,IN e N/Ynym > N, |[fn(x) — (x| < e.

Ceci montre que pour tout x € X, la suite (fn(x)), cy (qui est & valeurs dans un espace de BANACH) est de CAUCHY.
Ainsi, Vx € X, (fn(x)),, ¢y converge. Notons pour tout x € X, f(x) = 11111 frn(x) (ou encore f la limite simple de
n—+oo

la suite de fonctions du terme général fy,).
Maintenant dans (), un passage a la limite pour m est permis ;
Ve > 0,IN e N/Vn > N,vx € X, |[|[fa(x) —f(x)|| < e.

Soit
Ve >0,IN e N/V¥n > N, |[[f, —f| <e.
II]loo

Ceci montre que f, ——— f. Le résultat est établi.
n—+oo

THEOREME 67 : THEOREME DU POINT FIXE :

Soit E un espace de BANACH et f: E — E contractante ie.
Ik € [0,11/V(x,y) € B2, [|[f(x) = f(y)[| < klx —y].

Alors f admet un unique point fixe. De plus, celui-ci est la limite commune de toutes les suites de la forme

up € E,
yneN, upi =7f(un)

Démonstration. Commencons par ['unicité, c’est-a-dire on montre que si f admet un point fixe, alors il est unique.
Soient w, w’ deux vecteurs tels que f(w) = w et f(w') = w’. Alors

[f(w) = f(w)] = o —w'| < k[lw—w].
Ainsi, (1 —k)|[Jw — w’|| <0. Mais 1 —k > 0, donc ||w — w’|| <0 puis ||w — w’|| = 0. Finalement, w = w’.

Maintenant, I'existence. On considére la suite (un), oy définie comme dans I’énoncé du THEOREME. Le but est de
montrer que celle-ci est convergente en montrant qu’elle est de CAUCHY.

Ona:

YneN, [uniz —unpl = [If (unsr) = (un)]|
< k Hun+1 _unH .

I’ « idée » est donc de répéter ce proceés :

<Juns2 —uni1| L kfunpr —unll
<k-kfun —uwna
S k3 ||un—1 - un—Z”
<oy
Une récurrence simple fournit alors ¥n € N*,  [lun —un_1] < k™' [[ug —uol|. Deux termes successifs de (un), oy
sont donc « assez proches ». L’idée est d’établir que n’importe deux termes de la suite sont aussi « assez proches ».

Encore une autre fois, I’« idée » est

“Ilungz =unll < funz = unpa | + uner —un|

< (KM KM lwr — uol| »

puis
<|ungs —unll < [uniz —ung2ll + [[uns2 —un|
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S (kn+2 +kn+1 +kn> Hu1 _UO” N

Ainsi, on peut montrer par récurrence sur ¢ = m — N que

m—nm—1 K"
vm>neN, |un—un| k™[ D K| wr —uol < 7 I = woll
p=0
kﬂ
Soit € > 0. Puisque [lur —uol| ——— 0, alors
1—k n—-+oo

INeNNVm>n>N, ||lum —unl <e.

Ceci montre que (un), oy est de CAUCHY donc est convergente puisque E est un espace de BANACH. Notons { sa
limite. f est continue car lipschitzienne et alors,

(= lim un, 7= lim f(un):f( lim un):f(E).

n—+oo n—-+oo n—-+oo

Ceci montre existence d’un point fixe de f. |

THEOREME 68 : CONNEXITE PAR ARCS DANS R :

Les connexes par arcs dans R sont les intervalles.

Démonstration. =) Un intervalle est convexe donc connexe par arcs.
<&=) Soit A C R un connexe par arcs non vide. On ne discutera pas le cas trivial ou A est vide.

Soient x <y € A. Montrons que [x,y] C A. Si x =y, c’est immédiat. Dorénavant, x #y. Soit t € [x,y]. Il existe
une fonction y : [0, 1] — A continue telle que y(0) =x et y(1) =y.

1

0
Le théoréme des valeurs intermédiares affirme alors I'existence de n € [0, 1] tel que y(n) =t. Or, y([0,1]) C A. Ainsi,
t € A. Le théoréme est établi. |

THEOREME 69 : LE THEOREME DES VALEURS INTERMEDIARES (GENERALISE) :

L’image continue d’un connexe par arcs est un connexe par arcs.

En particulier, si F = R, I'image d’un continue d’un connexe par arcs est un intervalle.

Démonstration. Soient f : E — F continue et A C E connexe par arcs. Soient (z,t) € (f(A))?. Notons alors
X,y € A tels que f(x) = z et f(y) = t. Par connexité de A, il existe un chemin continue y joignant x et y. Posons
E=foy:[0,1] — f(A). On a &(0) = f(y(0)) = f(x) =z et £(1) = f(y(1)) = f(y) = t. De plus, y([0,1]) C A donc
E([0,1]) = f(v([0,1])) C f(A). Finalement, & est continue tant que composée de fonctions continues. Ainsi, & est un
chemin continue joignant z et t, fournissant que f(A) est connexe par arcs. |

THEOREME 70 : FONCTIONS LOCALEMENT CONSTANTES ET CONNEXITE :

Toute fonction localement constante sur un connexe par arcs est constante.
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Démonstration. Soient A C E un connexe par arcs et f: A — F. Supposons que f est localement constante ie.

vx € A,dr > 0/3Cx € F/ fiB(x,r) = Cx.

Soit xo € A. On veut montrer que Vx € A, f(x) = f(xq). Posons alors

o: A—R

N 1, si f(x) = f(xo),
0, sinon.

On montre que @ est continue. Soit x € A et (xn),cy € AN telle que x, —— x. f est localement constante, donc

n—-+oo

il existe ¢ > 0 et une constante Cyx € F telle que Vt € B(x,¢), f(t) = Cx. D’autre part, a partir d’un certain rang,
Xn € B(x, ¢) soit (xn) = f(x) ou encore @ (xn) = @(x) & partir d’un certain rang. Ceci fournit @ (x;,) B o(x)
n—-+4oo

puis la continuité de .

Maintenant, ¢ est continue sur A connexe par arcs. Ainsi, @(A) est un intervalle. Or, ¢@(A) C {0,1}. Donc

©(A) € {z,{0}L{1}}. Or, @ (xo) =1, donc @(A) ={1}. Ceci fournit que Vx € A, f(x) = (xo). |

THEOREME 71 : PARTIES OUVERTES ET FERMEES D’UN CONNEXE PAR ARCS :

La seule partie non vide d’un connexe par arcs A qui est & la fois ouverte et fermée (sous la topologie induite par A)
est A.

Démonstration. Soit P C A non vide une partie a la fois ouverte et fermée relativement a A. Notons f = 1p :

A — R. Montrons que f est continue, en montrant que I'image réciproque de tout ouvert de R est un ouvert relatif
de A. Soit O un ouvert de R.

eSi0¢0et1¢O0,alors f'(0) =& (qui est un ouvert relatif de A).

eSi0¢Oet1e0,alorsf '(0O)=P (qui est ouvert relatif de A).

eSi0eOet1¢O0,alorsf '(O)=A\P (qui est ouvert relatif de A par fermeture relative de A).
eSi0eOet1e0,alors f '(0)=A (qui est ouvert relatif de A).

Ainsi, f est continue. Donc f (A) est un intervalle. Or, @(A) C {0,1}. Ainsi, @(A) ={0} ou @(A) ={1}. Mais P est

non vide, donc Ixp € A/ f(xo) = 1. Donc f = 1. Ceci fournit 1p = 1o puis P = A. [ |

THEOREME 72 : COMPOSANTES CONNEXES PAR ARCS :
Soit A C E non vide.

La relation ~5 définie sur A% par

v(0) =

V(x,y) € A%, x~ay <= Iy eC([0,1],A)/
(1)

X?
Y

est une relation d’équivalence. Les classes d’équivalences pour ~a sont connexes par arcs dites composantes connexes
par arcs de A.

Démonstration. Soient x,y,z € A. La fonction vy constante en x sur [0, 1] est un chemin continue joignant x et

lui-méme. Donc x ~a Xx.

Maintenant, supposons que x ~4 Y. Soit y un chemin continue joignant x et y. Le chemin « inverse » t — y(1—t)

joigne y et x et est continue a valeurs dans A. Ainsi, y ~a x.
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Supposons maintenant que x ~A Yy et y ~a z. Soient y et & les deux chemins joignant respectivement x et y, puis y
et z. Le chemin T obtenu par « concatenation » des deux chemins est continue, & valeurs dans A et joigne x et z :

0
vte[0,1], (t) = |
2

Ainsi, x ~a z. On a montré que ~a est une relation d’équivalence.

Maintenant, soient x € A et (a,b) € (cl(x))z. Alors a ~o x et x ~a b. Donc a ~a b. Ainsi, il exsite un chemin
continu 7y joignant a et b a valeurs dans A. Supposons qu’il existe to € [0, 1] de sorte que ¢ : =y (to) € cl(x). Ainsi, ¢
et a ne sont pas en relation par rapport a ~a.

D’autre part, ¢ ~o a ; d’abord, tog # O car dans le cas contraire, ¢ = y(0) = a. Or, a est dans la classe de x bien
que ¢ ne l'est pas. Puis, on considére le chemin continu ¥ : t — 7y (tot). ¥ est continu sur [0, 1] & valeurs dans A et

vérifie Y(0) =vy(0) = a et ¥(1) =y (to) = c. Ainsi, a ~a ¢. Puisque a ~a x, alors ¢ ~a x, contredisant ¢ & cl(x).

Ainsi, y([0,1]) C cl(x). Le résultat est établi. |
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CALCUL DIFFERENTIEL

Dans toute la suite, E et F sont deux R-espaces vectoriels normés de dimensions finies.

THEOREME 1 : DIFFERENTIABILITE :
Soit E et F deux espaces vectoriels de dimensions finies, U un ouvert de E et f: U — F. Soit a € U.
Si f est différentiable en a ie. il existe @ € L(E,F) telle que

fla+h) = f(a)+ o) +o (|,

alors @ est unique et est appelée la différentielle de f en a, notée df(a).

Démonstration. Supposons l'existence de deux applications linéaires @ et 1\ vérifiant I’énoncé. Alors

fla+h) = fla)+ oM +o(|[h]) = fla)+bR)+o(|h]).

h—0

Soit (¢ — ) (h) o0 (IIh]]) ou encore, hm (@ —) (h) = 0. Soit u e E\{0}.

1
o ||h|
Notons h = tu ou t est un paramétre réel strictement positif. Alors

1 1

1
(@ =) (h) = (@ =) (tu) = — (¢ — ) (u).
[Imll [Feul] [[uf
Ainsi, le passage & la limite pour t — 0" donne
1
(@ =) (u) =
[
Ainsi, @(u) =P (u). De plus, cette égalité est vraie méme pour uw = 0. Ceci montre que @ = . |

THEOREME 2 : DIFFERENTIABILITE ET CONTINUITE :

Si f est différentiable en a, alors elle y est continue.

Démonstration. Supposons la différentiabilité en a. Alors

fla+h) = f(a) +df(a)-h+o(|h]).

h50
Ainsi, quad h tend vers 0, df(a) - h tend vers O car df(a) est linéaire sur E qui est de dimension finie donc est continue.
Ainsi,

lim f h) = f(a).

lim f(a + ) = f(a)
Ceci achéve la démonstration. ]

Notons :

Différentiabilité en @ =———= Continuité en a =——=> Continuité des fonctions partielles en a

Toute implication non mentionnée étant fausse.

THEOREME 3 : DIFFERENTIABILITE ET DERIVEE SUIVANT UN VECTEUR :

Si f est différentiable en a, alors f est dérivable suivant tout vecteur v en a et :

D,f(a) = df(a)-v
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Démonstration. Supposons que f est différentiable en a. Soit v € E. En particulier,

fla+tv) = f(a) + df(a) - (tv) + o ([tl||v]])

t
t#0

]
1)

ou encore
fla+tv) —f(a) = tdf(a)-v+o(t).
t—0
t£0
Ceci donne
fla+tv)—f(a)

t t
t

df(a)-v+o(1).

WL
oo

fla+tv) — f(a)

: = df(a) - v. En particulier,  est dérivable en a suivant v et D, f(a) = df(a) - v.

Ainsi, lim
t—0
t£0
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